目录
前言
图像分类是计算机视觉领域中的一个核心任务,其目标是将输入的图像分配到预定义的类别中。随着深度学习技术的快速发展,图像分类的准确率得到了显著提升。卷积神经网络(CNN)作为深度学习在图像处理中的重要架构,已经成为图像分类任务的主流方法。
本文将详细介绍如何构建和优化基于深度学习的图像分类模型,包括概念讲解、代码示例、应用场景、注意事项以及相关的架构图和流程图。通过本文的介绍,读者可以系统地掌握图像分类模型的构建与优化方法。
目录
图像分类是计算机视觉领域中的一个核心任务,其目标是将输入的图像分配到预定义的类别中。随着深度学习技术的快速发展,图像分类的准确率得到了显著提升。卷积神经网络(CNN)作为深度学习在图像处理中的重要架构,已经成为图像分类任务的主流方法。
本文将详细介绍如何构建和优化基于深度学习的图像分类模型,包括概念讲解、代码示例、应用场景、注意事项以及相关的架构图和流程图。通过本文的介绍,读者可以系统地掌握图像分类模型的构建与优化方法。