目录
二、Transformer 在智能推荐系统中的核心架构与技术
三、基于 Transformer 的智能推荐系统代码实现与案例
五、Transformer 推荐系统实施中的注意事项与优化策略
摘要 :智能推荐系统作为互联网服务中的关键组成部分,对提升用户体验、促进业务增长发挥着至关重要的作用。Transformer 大模型凭借其强大的序列建模能力和特征捕捉能力,为智能推荐系统带来了新的突破和创新。本文全面深入地探讨了 Transformer 大模型在智能推荐系统中的应用,从基础概念到实际操作,涵盖了用户行为序列建模、多模态推荐、实时推荐更新等关键领域,并通过代码示例详细阐述了如何利用 Transformer 大模型构建高效精准的推荐系统。同时,分析了在实际业务场景中可能遇到的挑战和注意事项,为读者呈现了一幅关于 Transformer 大模型赋能智能推荐系统的全景图,助力推动推荐技术的进一步发展和落地应用。
一、智能推荐系统与 Transformer 的结合背景
(一)智能推荐系统的发展需求
随着互联网的飞速发展,用户面对的信息量呈爆炸式增长,如何在海量信息中为用户精准推荐感兴趣的内容成为各大互联网平台的核心竞争力。传统推荐算法(如基于协同过滤、矩阵分解等)在处理用户行为序列的复杂依赖关系、捕捉长期兴趣演变以及融合多模态信息(如文本、图像、视频等)方面存在一定的局限性。智能推荐系统亟需更强大的建模工具来应对这些挑战,提高推荐的准确性和多样性。
(二)Transformer 的独特优势赋能推荐系统
-
序列建模能力凸显用户兴趣演变 用户在平台上的行为(如点击、浏览、购买等)形成了一序列数据,这些行为之间存在复杂的先后顺序和依赖关系,反映了用户兴趣的动态变化。Transformer 的自注意力机制能够充分捕捉序列中任意两个位置之间的关联,无论它们相隔多远,从而精准建模用户长期兴趣的演变过程。例如,用户先浏览了运动装备的新闻,随后搜索了运动鞋的品牌,Transformer 能够理解这一序列行为背后潜在的购买意图,进而推荐相关的运动产品。
-
多模态融合能力丰富推荐维度 现代推荐系统需要整合多种模态的数据来全面刻画物品和用户的特征。Transformer 可以通过统一的序列建模框架,将文本描述(如商品标题、详情页)、图像特征(如商品图片)、用户行为序列等多种模态数据进行融合,生成更丰富、更全面的推荐候选。以短视频推荐为例,Transformer 能够结合视频的画面内容(通过图像特征提取)、音频信息(语音转文字后处理)以及用户的观看历史行为序列,为用户推荐符合其兴趣的个性化短视频。
-
模型并行计算优势满足实时推荐需求 在实际业务场景中,推荐系统需要在极短的时间内响应用户的请求,为用户提供可靠的实时推荐。Transformer 的并行计算特性使其在处理大规模用户行为数据和物品特征数据时,能够高效地并行执行计算任务,大大减少了推荐结果生成的延迟,满足实时推荐的苛刻要求。
二、Transformer 在智能推荐系统中的核心架构与技术
(一)用户行为序列建模
-
行为序列的构建与编码 用户行为序列通常包括一系列行为事件,每个事件包含行为类型(如点击、购买)、行为对象(如商品 ID、文章 ID)、时间戳等信息。首先,对行为序列进行适当的编码,将每个行为事件转化为固定维度的嵌入向量。例如,可以将商品 ID 映射到商品嵌入向量空间,将行为类型映射到行为类型嵌入向量空间,然后将两者拼接起来形成行为事件的嵌入表示。同时,为了捕捉时间信息,可以添加位置嵌入(根据时间顺序生成的位置编码)到行为事件嵌入中,构成完整的序列输入,如下图所示:
-
图 1 用户行为序列编码示意图(这里用文字描述:将用户的一系列行为事件,每个事件包含商品 ID、行为类型和时间戳,分别对商品 ID、行为类型进行嵌入编码,然后拼接并添加位置嵌入,形成最终的行为序列嵌入输入到 Transformer 模型中)。
-
-
Transformer 对行为序列的深度建模 将编码后的用户行为序列输入到 Transformer 编码器中,通过多层自注意力机制和前馈神经网络,模型可以学习到用户行为之间的复杂依赖关系和长期兴趣模式。例如,在处理一个包含用户连续多次浏览和购买行为的序列时,Transformer 能够识别出用户对某一类商品的兴趣逐渐加深,或者从一个品类的兴趣转移到另一个相关品类的趋势。通过这种方式,模型为每个用户生成一个富含深度行为信息的特征向量,作为后续推荐的依据。
(二)多模态特征融合技术
-
多模态数据的预处理与特征提取
-
文本特征处理 :对于物品的文本描述(如商品标题、详情页文本、新闻文章内容等),采用如 BERT 等预训练语言模型进行编码,提取文本的语义特征向量。这些文本特征能够反映物品的内容主题和详细信息。
-
图像特征提取 :利用预训练的视觉模型(如 ResNet、视觉 Transformer),对物品的图像进行处理,提取图像的视觉特征向量。例如,对于电商平台的商品图片,图像特征能够捕捉商品的外观、颜色、款式等信息。
-
其他模态数据处理 :对于音频数据(如有声书、播客等),可以提取音频的声学特征(如 MFCC 特征)并通过如 Wav2Vec 等模型进一步编码为特征向量;对于视频数据,结合视频的画面帧特征和音频特征进行综合处理。
-
-
基于 Transformer 的多模态融合架构 将不同模态的特征向量进行融合,可以采用以下几种基于 Transformer 的架构:
-
特征拼接后输入 Transformer :将各模态特征向量简单拼接成一个长向量,作为 Transformer 模型的输入序列。在模型内部,自注意力机制会自动学习各模态特征之间的关联和融合权重。不过,这种方法可能导致模型在处理高维输入时计算量过大,需要合理控制各模态特征的维度。
-
多模态独立编码后交叉融合 :为每个模态设计独立的 Transformer 编码器,分别对各模态特征进行编码,生成各模态的特征表示序列。然后,通过交叉注意力机制,让不同模态的特征序列互相关注、融合信息。例如,文本特征序列可以关注图像特征序列中的关键信息,反之亦然,最终将融合后的特征序列输入到一个共同的解码器或预测层,生成推荐结果。这种架构能够充分发挥各模态编码器的专业性,同时通过交叉注意力实现深度的多模态融合。
-
(三)实时推荐更新机制
-
在线学习架构引入 Transformer 为了及时捕捉用户兴趣的实时变化,如用户刚刚浏览了一个新的商品类别或搜索了新的关键词,推荐系统需要具备实时更新推荐模型的能力。可以采用在线学习的方式,将用户的最新行为数据实时反馈到 Transformer 模型中,通过增量式地更新模型参数,使模型能够快速适应用户的最新兴趣偏好。具体来说,可以维护一个滑动窗口内的用户最新行为序列,定期(如每几分钟)使用这个窗口内的数据对 Transformer 模型进行快速微调,同时保留模型对历史数据学习到的通用特征模式。
-
模型轻量化与快速推理优化 在实时推荐场景下,为了保证推荐的低延迟,对 Transformer 模型进行轻量化优化是必不可少的。一方面,可以采用模型剪枝技术,去除模型中对推荐效果贡献较小的神经元或连接,减小模型的体积和计算量;另一方面,采用量化技术将模型的权重从高精度浮点数转换为低精度整数(如从 FP32 量化为 INT8),加快模型的推理速度。此外,还可以针对具体的硬件平台(如 GPU、专用推荐芯片等),对 Transformer 模型的计算图进行优化,充分利用硬件的并行计算能力和指令集加速模型的推理过程。
三、基于 Transformer 的智能推荐系统代码实现与案例
(一)环境搭建与数据准备
-
开发环境配置 基于 Python 开发环境,安装以下关键库:
-
PyTorch(提供深度学习模型构建和训练的基础功能)
-
Transformers(Hugging Face 提供的库,包含多种预训练 Transformer 模型,方便快速应用到推荐系统中)
-
Pandas、NumPy(用于数据处理和分析)
-
TensorFlow 或其他可视化工具(如 Matplotlib,用于可视化推荐结果等)
-
# 安装必要的库(在命令行执行)
pip install torch transformers pandas numpy matplotlib
-
数据收集与预处理 假设我们构建一个电商平台的智能推荐系统,数据包括用户行为日志(用户 ID、行为类型、商品 ID、时间戳)和商品信息表(商品 ID、商品标题、商品图片链接、商品类别等)。
import pandas as pd
# 加载用户行为数据
user_behavior_data = pd.read_csv('user_behavior.csv')
# 数据示例展示
print(user_behavior_data.head())
# 加载商品信息数据
item_info_data = pd.read_csv('item_info.csv')
print(item_info_data.head())
# 数据预处理示例:对用户行为序列进行构建,每个用户的行为按时间顺序排列
user_behavior_sequence = user_behavior_data.groupby('user_id')['item_id'].apply(list).reset_index()
user_behavior_sequence.rename(columns={'item_id': 'behavior_sequence'}, inplace=True)
print(user_behavior_sequence.head())
(二)用户行为序列建模代码示例
import torch
import torch.nn as nn
from transformers import TransformerEncoder, TransformerEncoderLayer
class UserBehaviorTransformer(nn.Module):
def __init__(self, item_embedding_dim, behavior_embedding_dim, hidden_size, num_layers, nhead):
super(UserBehaviorTransformer, self).__init__()
# 商品嵌入层
self.item_embedding = nn.Embedding(num_embeddings=item_info_data['item_id'].nunique() + 1, embedding_dim=item_embedding_dim, padding_idx=0)
# 行为类型嵌入层
self.behavior_embedding = nn.Embedding(num_embeddings=user_behavior_data['behavior_type'].nunique() + 1, embedding_dim=behavior_embedding_dim, padding_idx=0)
# 位置嵌入层(用于捕捉时间序列信息)
self.position_embedding = nn.Embedding(num_embeddings=1000, embedding_dim=item_embedding_dim + behavior_embedding_dim) # 假设最大行为序列长度为 1000
# Transformer 编码层
encoder_layers = TransformerEncoderLayer(d_model=item_embedding_dim + behavior_embedding_dim + behavior_embedding_dim, nhead=nhead, dim_feedforward=hidden_size)
self.transformer_encoder = TransformerEncoder(encoder_layers, num_layers=num_layers)
def forward(self, behavior_sequences, item_ids, behavior_types, positions):
# 获取各嵌入表示
item_embed = self.item_embedding(item_ids)
behavior_embed = self.behavior_embedding(behavior_types)
position_embed = self.position_embedding(positions)
# 拼接嵌入向量
sequence_embed = torch.cat([item_embed, behavior_embed, position_embed], dim=2)
# 调整序列维度以满足 Transformer 输入要求(序列长度作为第一维度)
sequence_embed = sequence_embed.permute(1, 0, 2)
# Transformer 编码
output = self.transformer_encoder(sequence_embed)
# 返回用户行为特征表示(这里取序列最后一个位置的输出作为用户整体行为特征)
return output[-1, :, :]
# 示例:假设我们有以下用户行为序列数据(简化后的张量形式)
# behavior_sequences 的形状为 (batch_size, sequence_length)
batch_size = 32
sequence_length = 10
item_ids = torch.randint(1, item_info_data['item_id'].nunique() + 1, (batch_size, sequence_length))
behavior_types = torch.randint(1, user_behavior_data['behavior_type'].nunique() + 1, (batch_size, sequence_length))
positions = torch.arange(sequence_length).repeat(batch_size, 1) # 位置信息
# 初始化模型
model = UserBehaviorTransformer(item_embedding_dim=128, behavior_embedding_dim=64, hidden_size=256, num_layers=2, nhead=8)
# 前向传播获取用户行为特征
user_behavior_features = model(None, item_ids, behavior_types, positions)
print(user_behavior_features.shape) # 输出形状应为 (batch_size, hidden_size)
(三)多模态推荐系统代码实现
-
文本和图像特征提取代码
-
文本特征提取(使用 BERT) :
-
from transformers import BertTokenizer, BertModel
# 加载预训练的 BERT 模型和分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
bert_model = BertModel.from_pretrained('bert-base-uncased')
# 对商品标题文本进行编码
item_titles = item_info_data['item_title'].tolist()
inputs = tokenizer(item_titles, padding=True, truncation=True, return_tensors='pt', max_length=128)
# 提取文本特征
with torch.no_grad():
outputs = bert_model(**inputs)
text_features = outputs.last_hidden_state[:, 0, :] # 取 [CLS] 位置的特征作为文本特征
print(text_features.shape) # 输出形状为 (num_items, hidden_size)
* **图像特征提取(使用预训练视觉模型)** :
from torchvision import models, transforms
from PIL import Image
# 加载预训练的 ResNet 模型(以 ResNet - 50 为例)
resnet_model = models.resnet50(pretrained=True)
# 提取特征层(去掉最后一层分类层)
resnet_model = nn.Sequential(*list(resnet_model.children())[:-1])
# 图像预处理变换
image_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 假设我们有一个函数可以批量加载图像
image_paths = item_info_data['image_path'].tolist()
image_features = []
for image_path in image_paths:
image = Image.open(image_path).convert('RGB')
image = image_transform(image).unsqueeze(0) # 添加批次维度
with torch.no_grad():
feature = resnet_model(image)
image_features.append(feature.squeeze(0)) # 去掉批次维度
image_features = torch.stack(image_features)
print(image_features.shape) # 输出形状为 (num_items, image_feature_dim)
-
多模态融合与推荐代码
class MultimodalRecommendationModel(nn.Module):
def __init__(self, text_feature_dim, image_feature_dim, hidden_size, num_layers, nhead):
super(MultimodalRecommendationModel, self).__init__()
# 多模态特征融合层
self.fusion_layer = nn.Linear(text_feature_dim + image_feature_dim, hidden_size)
# Transformer 编码层(用于融合用户行为特征和其他多模态特征)
encoder_layers = TransformerEncoderLayer(d_model=hidden_size, nhead=nhead, dim_feedforward=hidden_size * 2)
self.transformer_encoder = TransformerEncoder(encoder_layers, num_layers=num_layers)
# 预测层(用于预测用户对物品的点击概率等)
self.predict_layer = nn.Linear(hidden_size, 1)
def forward(self, user_behavior_features, text_features, image_features):
# 融合多模态特征
multimodal_features = torch.cat([text_features, image_features], dim=1)
multimodal_features = self.fusion_layer(multimodal_features)
# 将用户行为特征和多模态特征拼接(假设用户行为特征已经通过前面的行为 Transformer 模型得到)
# 这里简化处理,直接将两者拼接作为 Transformer 输入序列
combined_features = torch.cat([user_behavior_features.unsqueeze(1), multimodal_features.unsqueeze(1)], dim=1)
# 通过 Transformer 编码
output = self.transformer_encoder(combined_features.permute(1, 0, 2)) # 调整维度以满足 Transformer 输入要求
# 获取最终的推荐得分(取最后一个位置的输出进行预测)
recommendation_scores = self.predict_layer(output[-1, :, :]).squeeze(-1)
return recommendation_scores
# 初始化多模态推荐模型
multimodal_model = MultimodalRecommendationModel(text_feature_dim=768, image_feature_dim=2048, hidden_size=256, num_layers=2, nhead=8)
# 假设我们已经有了用户行为特征(来自前面的行为 Transformer 模型)
# user_behavior_features 的形状为 (batch_size, hidden_size)
# text_features 和 image_features 的形状为 (num_items, feature_dim),这里需要进行批次处理和适当调整维度以匹配实际场景
# 这里简化示例,假设我们有一个批次的用户行为特征和对应的商品多模态特征
batch_user_behavior_features = user_behavior_features # (batch_size, hidden_size)
batch_text_features = text_features[:batch_size] # (batch_size, text_feature_dim)
batch_image_features = image_features[:batch_size] # (batch_size, image_feature_dim)
# 前向传播获取推荐分数
recommendation_scores = multimodal_model(batch_user_behavior_features, batch_text_features, batch_image_features)
print(recommendation_scores.shape) # 输出形状应为 (batch_size)
(四)实时推荐更新代码实现
-
在线学习更新模型代码
# 假设我们有一个在线学习的数据流,每次获取一批新的用户行为数据
class OnlineLearningRecommendation:
def __init__(self, model_path):
# 加载预训练的 Transformer 推荐模型
self.model = torch.load(model_path)
self.optimizer = torch.optim.AdamW(self.model.parameters(), lr=1e-4)
self.loss_fn = nn.BCEWithLogitsLoss() # 二分类损失函数(假设是点击预测任务)
def update_model(self, new_user_behavior_batch, new_labels_batch):
# new_user_behavior_batch: 新的用户行为序列数据
# new_labels_batch: 对应的标签(如是否点击)
self.model.train()
# 前向传播(这里需要根据实际模型的输入要求对数据进行预处理)
outputs = self.model(new_user_behavior_batch)
loss = self.loss_fn(outputs.squeeze(), new_labels_batch.float())
# 反向传播和优化
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
print(f'Online update loss: {loss.item()}')
# 示例使用
online_learner = OnlineLearningRecommendation(model_path='pretrained_recommendation_model.pth')
# 假设获取到新的用户行为数据和标签
new_user_behavior_data = ... # 新的用户行为数据张量
new_labels = ... # 对应的标签张量
online_learner.update_model(new_user_behavior_data, new_labels)
-
模型轻量化与快速推理代码
-
模型量化代码 :
-
# 对推荐模型进行量化
quantized_model = torch.quantization.quantize_dynamic(
multimodal_model, # 刚才构建的多模态推荐模型
{nn.Linear}, # 指定要量化的层类型
dtype=torch.qint8
)
# 保存量化后的模型
torch.save(quantized_model, 'quantized_recommendation_model.pth')
* **模型剪枝代码(示例)** :
import torch.nn.utils.prune as prune
# 对多模态推荐模型中的线性层进行剪枝(剪枝比例为 30%)
for module_name, module in multimodal_model.named_modules():
if isinstance(module, nn.Linear):
prune.l1_unstructured(module, name='weight', amount=0.3)
# 执行剪枝后,模型参数中部分权重会被置为 0,可以进一步将模型转换为更紧凑的形式或利用稀疏矩阵加速推理
四、Transformer 在智能推荐系统中的应用场景拓展
(一)个性化新闻推荐
在新闻平台中,用户每天会浏览大量不同类型的新闻文章。Transformer 能够根据用户的长期阅读行为序列(如之前浏览的新闻类别、阅读时长等)和新闻文章的多模态内容(新闻标题文本、配图等),精准预测用户可能感兴趣的新闻,提高新闻推荐的点击率和用户留存率。例如,对于一个平时关注科技和体育新闻的用户,Transformer 模型能够识别出其兴趣点,并在新的科技产品发布或体育赛事报道时及时推荐相关文章。
(二)视频推荐系统
对于视频平台(如短视频、长视频平台),Transformer 可以综合分析用户观看历史行为序列(包括观看视频的类型、观看时长、点赞评论等行为)、视频的多模态特征(视频画面内容、音频信息、标题和简介文本等),为用户生成符合其兴趣偏好的个性化视频推荐列表。同时,利用实时推荐更新机制,当用户观看了一个新的视频后,能够立即更新推荐列表,推荐与之相关或相似的其他视频,增强用户粘性。
(三)电商平台商品推荐
在电商平台场景下,Transformer 大模型能够处理用户复杂的购买和浏览行为序列,结合商品的多模态信息(商品图片、标题、详情页文本、用户评价等),实现商品的精准推荐。例如,在用户浏览了一个电子产品页面后,模型可以参考用户的历史购买行为(如之前购买过相关配件)和该电子产品的多模态特征,推荐配套的其他电子产品或周边配件,提升商品的交叉销售率和平台的销售额。
五、Transformer 推荐系统实施中的注意事项与优化策略
(一)冷启动问题与解决方案
-
新用户冷启动 对于新注册的用户,由于缺乏足够的历史行为数据,Transformer 模型难以准确建模其兴趣。解决方案包括:
-
收集用户的注册信息(如年龄、性别、兴趣标签等)构建初始的用户画像,作为模型的辅助输入。
-
采用基于人口统计学信息的推荐策略,结合热门商品或通用兴趣内容进行初始推荐,引导用户产生行为数据。随着用户行为数据的积累,逐渐过渡到基于 Transformer 的个性化推荐模型。
-
-
新物品冷启动 新上架的商品或新发布的文章等物品由于没有用户行为数据,难以被推荐系统有效识别和推荐。应对方法:
-
利用物品的多模态内容(如商品的标题文本、图片等)通过内容基推荐方法(如计算物品之间的内容相似度)将其推荐给可能感兴趣的用户。例如,将新商品推荐给之前浏览过相似类型商品的用户。
-
结合商家或内容生产者的标签信息,将新物品推送给关注相关标签的用户群体。
-
(二)模型训练与评估优化
-
数据质量问题与清洗策略 用户行为数据和物品信息数据可能存在噪声(如错误的用户行为记录、不准确的物品标签等)和偏差(如某些用户行为过度采样、某些物品类别数据稀缺等)。需要定期对数据进行清洗和质量评估:
-
对用户行为数据进行异常检测,去除明显不符合逻辑的行为记录(如短时间内连续点击大量不相关商品)。
-
采用数据增强技术平衡物品类别数据分布,对于数据稀缺的物品类别,可以通过数据合成(如基于 GAN 的方法生成虚拟用户行为数据)或过采样策略增加其数据量。
-
-
模型评估指标与方法 除了常见的推荐系统评估指标(如点击率、转化率、准确率、召回率等),还需要关注模型对用户兴趣的长期捕捉能力以及推荐结果的多样性:
-
采用离线评估和在线 A/B 测试相结合的方式。离线评估通过历史数据评估模型性能,快速筛选出有潜力的模型版本;在线 A/B 测试在实际业务流量中对比不同模型版本的推荐效果,衡量其对业务指标(如用户活跃度、收入等)的真实影响。
-
引入推荐结果多样性评估指标(如推荐列表中物品类别的覆盖度、推荐结果的熵等),避免推荐结果过于集中于少数热门物品,提升用户体验和平台的长尾商品销售能力。
-
(三)模型部署与性能监控
-
高效模型部署架构 构建高效的模型服务架构,以支持大规模用户的推荐请求:
-
采用微服务架构将推荐系统拆分为多个独立的服务模块(如用户特征服务、物品特征服务、模型推理服务等),便于独立扩展和维护。
-
利用模型服务器(如 TorchServe、TensorFlow Serving 等)对 Transformer 推荐模型进行部署,优化模型加载和推理过程,实现快速响应用户请求。
-
-
性能监控与模型更新策略 建立完善的性能监控体系,实时监测推荐系统的各项指标:
-
监控模型的推荐效果指标(如线上点击率、转化率等),当指标出现下降时,及时触发模型重新训练或参数调整流程。
-
监测模型服务的性能指标(如推理延迟、吞吐量等),根据业务流量的变化动态调整模型服务的资源分配(如增加 GPU 服务器数量),确保推荐系统的稳定运行。
-
六、总结
Transformer 大模型为智能推荐系统带来了前所未有的机遇,其卓越的序列建模能力和多模态融合能力使得推荐系统能够更精准地捕捉用户兴趣、提供个性化推荐内容。本文从理论基础到实际代码实现,全面深入地探讨了 Transformer 在智能推荐系统中的应用方法和实践技巧,并详细分析了在实际业务场景中可能遇到的冷启动、模型训练评估、部署监控等挑战和相应的解决方案。通过合理利用 Transformer 大模型的优势并克服实际应用中的困难,智能推荐系统将能够更好地满足用户需求、提升平台业务价值,在未来的互联网服务中发挥更加关键的作用。
七、引用
[1] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention Is All You Need. arXiv preprint arXiv:1706.03762.
[2] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre - training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805.
[3] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A Robustly Optimized BERT Pretraining Approach. arXiv preprint arXiv:1907.11692.
[4] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. arXiv preprint arXiv:1512.03385.
[5] Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal Loss for Dense Object Detection. arXiv preprint arXiv:1708.02002.
[6] Sun, C., Shrivastava, A., Singh, S., & Gupta, A. (2017). Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. arXiv preprint arXiv:1707.02968.