摘要
在人工智能应用开发中,工具扩展是提升应用能力的关键环节。Model Context Protocol (MCP) 提供了灵活的工具扩展机制,使开发者能够轻松地为AI代理添加新功能。本文将以计算器工具为例,深入探讨如何通过MCP扩展工具功能,实现从基础运算到高级数学计算的完整实践。
1. 工具扩展架构
1.1 整体架构
1.2 功能架构
mindmap
root((工具扩展))
基础运算
加法
减法
乘法
除法
高级运算
平方根
指数
对数
自定义功能
参数验证
错误处理
结果格式化
2. 环境准备
2.1 环境架构
2.2 实现示例
# 环境配置示例
from mcp.config import Config
from mcp.types import EnvironmentConfig
import json
class 环境配置:
def __init__(self):
self.配置 = EnvironmentConfig(
开发环境=True,
调试模式=True,
日志级别="DEBUG"
)
self.管理器 = Config(self.配置)
async def 配置环境(self):
try:
# 1. 初始化环境
await self.初始化环境()
# 2. 配置工具
await self.配置工具()
# 3. 验证环境
return await self.验证环境()
except Exception as e:
return await self.处理错误(e)
3. 基础工具实现
3.1 工具架构
3.2 实现示例
# 基础工具示例
from mcp.server.fastmcp import FastMCP
class 计算器工具:
def __init__(self):
self.服务器 = FastMCP("calculator")
self.注册工具()
def 注册工具(self):
"""注册基础计算工具"""
@self.服务器.tool()
def add(a: float, b: float) -> float:
"""加法运算"""
return a + b
@self.服务器.tool()
def subtract(a: float, b: float) -> float:
"""减法运算"""
return a - b
@self.服务器.tool()
def multiply(a: float, b: float) -> float:
"""乘法运算"""
return a * b
@self.服务器.tool()
def divide(a: float, b: float) -> float:
"""除法运算"""
if b == 0:
raise ValueError("除数不能为零")
return a / b
4. 高级工具扩展
4.1 扩展架构
4.2 实现示例
# 高级工具示例
from mcp.server.fastmcp import FastMCP
import math
class 高级计算器工具:
def __init__(self):
self.服务器 = FastMCP("advanced_calculator")
self.注册工具()
def 注册工具(self):
"""注册高级计算工具"""
@self.服务器.tool()
def sqrt(a: float) -> float:
"""计算平方根"""
if a < 0:
raise ValueError("不能计算负数的平方根")
return math.sqrt(a)
@self.服务器.tool()
def power(a: float, b: float) -> float:
"""计算幂运算"""
return math.pow(a, b)
@self.服务器.tool()
def log(a: float, base: float = 10) -> float:
"""计算对数"""
if a <= 0 or base <= 0:
raise ValueError("参数必须为正数")
return math.log(a, base)
5. 工具集成
5.1 集成流程
5.2 实现示例
# 工具集成示例
from mcp.integration import Integration
from mcp.types import IntegrationConfig
import json
class 工具集成:
def __init__(self):
self.配置 = IntegrationConfig(
服务器地址="http://localhost:3000",
超时时间=30,
重试次数=3
)
self.集成器 = Integration(self.配置)
async def 集成工具(self, 工具名称: str, 参数: dict):
try:
# 1. 发现工具
工具 = await self.发现工具(工具名称)
# 2. 验证参数
await self.验证参数(工具, 参数)
# 3. 执行工具
return await self.执行工具(工具, 参数)
except Exception as e:
return await self.处理错误(e)
6. 开发计划
6.1 实施计划
7. 最佳实践
7.1 实践架构
mindmap
root((最佳实践))
开发规范
代码规范
文档规范
测试规范
工具使用
工具选择
参数配置
错误处理
性能优化
资源管理
并发处理
缓存策略
7.2 实现示例
# 最佳实践示例
class 开发实践:
def __init__(self):
self.配置 = {}
self.工具 = None
async def 应用实践(self, 实践类型: str, 上下文: dict):
try:
# 1. 选择实践
实践 = await self.选择实践(实践类型)
# 2. 应用实践
结果 = await self.应用实践(实践, 上下文)
# 3. 验证结果
return await self.验证结果(结果)
except Exception as e:
return await self.处理错误(e)
8. 常见问题解答
-
Q: 如何选择合适的工具类型?
A: 根据应用场景和需求选择合适的工具类型。 -
Q: 如何处理工具调用失败?
A: 实现完善的错误处理和重试机制。 -
Q: 如何优化工具性能?
A: 使用缓存和并发处理优化性能。 -
Q: 如何保证工具安全性?
A: 实施参数验证和访问控制。 -
Q: 如何管理工具版本?
A: 使用版本控制和依赖管理工具。
9. 总结
通过本文的介绍,您应该能够:
- 理解MCP工具扩展的架构
- 掌握基础工具的开发方法
- 实现高级工具的功能
- 完成工具集成
- 解决常见问题
10. 参考资料
11. 附录
11.1 配置模板
-
工具配置
tools: basic: enabled: true timeout: 30 advanced: enabled: true timeout: 60
-
服务器配置
server: host: "localhost" port: 3000 debug: true tools: enabled: true timeout: 30
11.2 常用命令
-
开发命令
# 创建虚拟环境 python -m venv .venv # 安装依赖 pip install -r requirements.txt # 运行服务器 python main.py
-
测试命令
# 运行测试 pytest tests/ # 生成报告 pytest --html=report.html # 性能测试 pytest --benchmark-only