摘要 本文深入探讨了LLaMA-Factory框架中的数据准备与处理流程。作为大模型微调的关键环节,高质量的数据集对模型效果有着决定性影响。本文将从数据格式规范、数据预处理、数据增强、数据验证等多个维度,详细介绍如何构建适合LLaMA-Factory的训练数据集,并通过实际案例展示数据处理的最佳实践。 目录 数据格式规范 数据预处理流程 数据增强技术 数据验证与清洗 数据集构建实践