回归学术圈,何恺明MIT第一堂AI课

著名AI科学家何恺明在MIT的首堂课程中介绍了卷积神经网络基础知识,回顾了他的学术历程,包括ResNet的里程碑式贡献。他的研究成果多次获奖,成为MIT引用量最高的学者之一。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,3月7日,麻省理工学院电气工程与计算机科学系副教授·何恺明,迈上讲台,并成功地进行了他人生中的首堂教学课程。

第一堂课

课程官网:https://advances-in-vision.github.io/

图片

作为麻省理工学院(MIT)电气工程与计算机科学系(EECS)副教授,何恺明完成了他的第一堂课,主题是卷积神经网络的基础知识。

课程的名字是《Advances in Computer Vision》,总共有四位讲师。

而助教的人数高达17人。

图片

四位老师在课堂上自拍留影,700座的大教室座无虚席,盛况空前。

图片

课程资料

这节课分为四个部分,包括卷积的基本概念、卷积神经网络的概念、经典卷积神经网络的分析(包括LeNet、AlexNet和VGG)、以及可视化。

图片

顶尖AI科学家的成长之路

何凯明的人生首堂课能引起这么大的关注,不是没有原因的。

2003年,何恺明以震撼人心的900分的标准分成绩位居广东省高考总分第一,从而成功被清华大学物理系基础科学班录取。在完成清华物理系基础科学班的学业后,他进入了香港中文大学多媒体实验室攻读博士学位,并成为汤晓鸥教授的学生。2007年,何恺明进入微软亚洲研究院视觉计算组实习,拜孙剑博士为实习导师。

2011年获得博士学位后,何恺明加入微软亚洲研究院担任研究员。2016年,他加入Facebook人工智能实验室,担任研究科学家。

何恺明的研究成果屡获殊荣。2009年,他与汤晓鸥教授和孙剑博士合作完成的论文《基于暗原色的单一图像去雾技术》荣获国际计算机视觉顶级会议CVPR的最佳论文奖。

2016年,何恺明凭借ResNet再次荣获CVPR的最佳论文奖,此外,他的另一篇论文入围了CVPR2021的最佳论文候选。何恺明还因为他的研究成果Mask R-CNN获得了ICCV 2017的最佳论文奖(Marr Prize),同时也参与了当年最佳学生论文的研究。

根据Google Scholar的统计,何恺明共发表了74篇论文,其H指数为68。截至今日,他的研究成果已经被引用超过53万次,并以每年超过10万次的速度不断增长。

图片

简单来说,一加入MIT后,他立即成为该校学者中被引用量最高的人,无论学科,没有任何对手。

发表神作不胜枚举

提起何恺明的作品,最著名的当属ResNet了。这篇论文发表于八年前,至今已经被引用超过20万次。

图片

《Deep Residual Learning for Image Recognition》在2016年荣获计算机视觉顶级会议CVPR的最佳论文奖。该论文的四位作者包括何恺明、张祥雨、任少卿和孙剑,如今他们在人工智能领域享有盛誉,都是微软亚洲研究院的成员。

何恺明关于残差网络(ResNet)的论文解决了深度网络中梯度传递的难题。这篇论文是2019年、2020年和2021年Google Scholar Metrics中被引用次数最多的论文,同时也构建了现代深度学习模型的基本组成部分(例如在Transformers、AlphaGo Zero和AlphaFold等领域的应用)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

python慕遥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值