关键路径是项目管理中进度管理的核心工具,用于确定项目的最短工期和关键活动。以下是系统化的分析步骤、计算方法和易错点总结:
一、关键路径的核心概念
- 定义 :
- 关键路径 :项目中时间最长的活动路径,决定项目总工期。
- 关键活动 :关键路径上的活动,其延迟会导致项目整体延迟。
- 特点 :
- 关键路径的总浮动时间(TF)为0 (或最小,视题目要求)。
- 关键路径可能不止一条(多条路径工期相同)。
二、关键路径的计算步骤
1. 绘制网络图(前导图/箭线图)
- 节点表示活动 ,箭头表示逻辑关系(FS/SS/SF/FF)。
- 常见依赖类型:完成-开始(FS)最常用。
2. 正推法(Forward Pass)——计算最早时间
- 最早开始时间(ES) :所有紧前活动完成后的最早时间。
- 公式:
ES = Max{紧前活动的EF}
(首活动ES=0)。
- 公式:
- 最早完成时间(EF) :
EF = ES + 工期
。
3. 逆推法(Backward Pass)——计算最晚时间
- 最晚完成时间(LF) :不影响项目总工期的最后完成时间。
- 公式:
LF = Min{紧后活动的LS}
(末活动LF=项目总工期)。
- 公式:
- 最晚开始时间(LS) :
LS = LF - 工期
。
4. 计算浮动时间(Slack)
- 总浮动时间(TF) :活动可延迟但不影响总工期的最大时间。
- 公式:
TF = LS - ES
或LF - EF
。
- 公式:
- 自由浮动时间(FF) :不影响紧后活动最早开始时间的延迟时间。
- 公式:
FF = Min{紧后活动的ES} - EF
。
- 公式:
5. 确定关键路径
- 所有
TF=0
的活动组成的路径即为关键路径。
三、实例演示(附计算表)
题目 :某项目包含以下活动(单位:天):
活动 | 紧前活动 | 工期 |
---|---|---|
A | - | 3 |
B | A | 4 |
C | A | 2 |
D | B, C | 5 |
E | D | 1 |
步骤1:绘制网络图
[A]→[B]→[D]→[E]
↘[C]↗
步骤2:正推法计算ES/EF
活动 | ES | EF=ES+工期 |
---|---|---|
A | 0 | 3 |
B | 3 | 7 |
C | 3 | 5 |
D | 7 | 12 |
E | 12 | 13 |
步骤3:逆推法计算LS/LF
活动 | LF | LS=LF-工期 |
---|---|---|
E | 13 | 12 |
D | 12 | 7 |
B | 7 | 3 |
C | 7 | 5 |
A | 3 | 0 |
步骤4:计算浮动时间
活动 | TF=LS-ES | FF=MIN(紧后ES)-EF |
---|---|---|
A | 0 | 0 |
B | 0 | 0 |
C | 2 | 2 (Min{D.ES}-EF=7-5) |
D | 0 | 0 |
E | 0 | 0 |
关键路径 :A→B→D→E
(总工期13天)。
四、常见易错点
- 依赖关系混淆 :
- 误将SS(开始-开始)关系当作FS计算。
- 正推/逆推逻辑错误 :
- 正推时未取紧前活动的最大EF(如活动D依赖B和C)。
- 浮动时间误判 :
- 混淆总浮动(TF)和自由浮动(FF)。
- 关键路径遗漏 :
- 未检查是否存在多条关键路径(如另一条路径工期也为13天)。
五、关键路径的扩展应用
- 进度压缩 :
- 赶工 :对关键活动增加资源,缩短工期(可能增加成本)。
- 快速跟进 :并行关键活动(可能增加风险)。
- 资源平衡 :
- 非关键活动的TF可用于调整资源分配。
附:关键路径速查口诀
“正推最早看紧前,逆推最晚看紧后;
总浮为零是关键,自由浮动看后边。”
关键路径法(CPM)练习题
题目:
某项目包含以下活动及其依赖关系和工期(单位:天),请绘制网络图,计算关键路径和总工期,并标出各活动的最早开始时间(ES)、最早完成时间(EF)、最晚开始时间(LS)、最晚完成时间(LF)以及 总浮动时间(TF) 。
活动 | 紧前活动 | 工期(天) |
---|---|---|
A | - | 5 |
B | A | 3 |
C | A | 4 |
D | B | 6 |
E | C | 2 |
F | D, E | 3 |
G | F | 4 |
要求:
- 绘制前导图(节点表示活动) ,标明依赖关系。
- 计算各活动的 ES、EF、LS、LF 和 TF 。
- 找出关键路径 ,并计算项目总工期。
- 哪些活动可以延迟而不影响总工期? (即 TF > 0 的活动)
注意:
计算LS、LF时要找对紧后的节点,比如本题中C的紧后节点为E\F\G,那计算LF时要从E、F、G中找到最小的LS。
参考答案:
参考答案(自行练习后再核对)
1. 网络图(前导图)
[A]→[B]→[D]→[F]→[G]
↘[C]→[E]↗
2. 时间参数计算
(1)正推法(计算 ES 和 EF)
活动 | ES | EF = ES + 工期 |
---|---|---|
A | 0 | 5 |
B | 5 | 8 |
C | 5 | 9 |
D | 8 | 14 |
E | 9 | 11 |
F | 14 | 17 |
G | 17 | 21 |
(2)逆推法(计算 LS 和 LF)
活动 | LF | LS = LF - 工期 |
---|---|---|
G | 21 | 17 |
F | 17 | 14 |
D | 14 | 8 |
E | 14 | 12 |
B | 8 | 5 |
C | 12 | 8 |
A | 5 | 0 |
(3)计算总浮动时间(TF = LS - ES)
活动 | TF |
---|---|
A | 0 |
B | 0 |
C | 3 |
D | 0 |
E | 3 |
F | 0 |
G | 0 |
3. 关键路径
- 关键路径 :
A → B → D → F → G
(总工期 21 天 )。 - 非关键活动 :C 和 E(TF=3),可延迟 3 天不影响总工期。
总结
- 关键路径 :最长路径,决定项目最短工期。
- 总浮动时间(TF) :非关键活动的可延迟时间。
- 应用 :可用于进度压缩(赶工/快速跟进)或资源优化。