题目链接:http://codeforces.com/problemset/problem/607/B
题意:给出一个大小为n的序列,可以一次消除一个数字或者一串回文,问最小消除多少次可以消除完所有数字
思路:如果s[i]==s[k],可以认为这2个数子最后一起消去,因为i与k之间的数字必定会消去剩下一个数字或者一串回文,与s[i]与s[k]组成新的回文,dp[i][j]表示从i到j最少需要消除多少次,dp[i][j]=min(dp[i+1][k-1]+dp[k+1][j],dp[i][j]),当i+1=k时不需要消去左区间需要特判,k==j时不需要消去右区间同样特判
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#define inf 0x3f3f3f3f
using namespace std;
int dp[530][530],s[530];
int main()
{
int n;
while (scanf("%d",&n)!=EOF)
{
memset(dp,inf,sizeof(dp));
for (int i=0;i<n;i++)
{
dp[i][i]=1;
scanf("%d",&s[i]);
}
for (int i=0;i<n-1;i++)
{
if (s[i]==s[i+1])
dp[i][i+1]=1;
else
dp[i][i+1]=2;
}
for (int len=3;len<=n;len++)
{
for (int i=0;i+len-1<n;i++)
{
int j=i+len-1;
dp[i][j]=min(dp[i+1][j]+1,dp[i][j]);
if (s[i]==s[j])
dp[i][j]=min(dp[i+1][j-1],dp[i][j]);
if (s[i]==s[i+1])
dp[i][j]=min(dp[i+2][j]+1,dp[i][j]);
for (int k=i+2;k<j;k++)
{
if (s[i]==s[k])
dp[i][j]=min(dp[i+1][k-1]+dp[k+1][j],dp[i][j]);
}
}
}
printf("%d\n",dp[0][n-1]);
}
}