题目:画中漂流
在梦境中,你踏上了一只木筏,在江上漂流。
根据对当地的了解,你知道在你下游 D 米处有一个峡谷,如果你向下游前进大于等于 D 米则必死无疑。
现在你打响了急救电话,T 秒后救援队会到达并将你救上岸。
水流速度是 1 米/秒,你现在有 M 点体力。
每消耗一点体力,你可以划一秒桨使船向上游前进 1 米,否则会向下游前进 1 米(水流)。
M 点体力需在救援队赶来前花光。
因为江面太宽了,凭借你自己的力量不可能上岸。
请问,有多少种划桨的方案可以让你得救。
两个划桨方案不同是指:存在某一秒钟,一个方案划桨,另一个方案不划。
输入格式
输入一行包含三个整数 D,T,M。
输出格式
输出一个整数,表示可以让你得救的总方案数,答案可能很大,请输出方案数除以 1,000,000,007 的余数。
数据范围
对于 50% 的评测用例,1≤T≤350。
对于所有评测用例,1≤T≤3000,1≤D≤T,1≤M≤1500。
输入样例:
1 6 3
输出样例:
5
解题思路:
在每个时刻都有两种选择:划船或者不划船
每次决策结束后,问题就变成相同形式且规模更小的子问题,就可以用递归求解。
为了避免重复计算,使用记忆型递归进行优化
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
const int N = 3010, M = 1510, MOD = 1000000007;
int f[N][N];
int d, t, m;
// 函数功能:返回第h时刻剩余体力为s时所有可能的方案数
int dfs(int h, int s)
{
if(f[h][s] != -1) return f[h][s]; //如果之前计算过,就直接返回结果
if(h == t) //递归终止条件
{
if(s) return 0; // 如果到最后一刻体力还没用完则方案不合法
else return 1; //到最后一刻体力用完,方案合法
}
if(d + 2 * (m - s) - h <= 0) f[h][s] = 0; //如果在当前情况下消耗所有的体力都不能成功,则方案数为0,无解
else
{
f[h][s] = dfs(h+1, s) % MOD; //不划
if(s > 0) f[h][s] = (f[h][s] + dfs(h+1, s - 1)) % MOD; //划
}
return f[h][s];
}
int main()
{
cin >> d >> t >> m;
memset(f, -1, sizeof f); //初始化记忆数组为-1
cout << dfs(0, m) << endl;
return 0;
}