画中漂流

题目:画中漂流
在梦境中,你踏上了一只木筏,在江上漂流。

根据对当地的了解,你知道在你下游 D 米处有一个峡谷,如果你向下游前进大于等于 D 米则必死无疑。

现在你打响了急救电话,T 秒后救援队会到达并将你救上岸。

水流速度是 1 米/秒,你现在有 M 点体力。

每消耗一点体力,你可以划一秒桨使船向上游前进 1 米,否则会向下游前进 1 米(水流)。

M 点体力需在救援队赶来前花光。

因为江面太宽了,凭借你自己的力量不可能上岸。

请问,有多少种划桨的方案可以让你得救。

两个划桨方案不同是指:存在某一秒钟,一个方案划桨,另一个方案不划。

输入格式
输入一行包含三个整数 D,T,M。

输出格式
输出一个整数,表示可以让你得救的总方案数,答案可能很大,请输出方案数除以 1,000,000,007 的余数。

数据范围
对于 50% 的评测用例,1≤T≤350。
对于所有评测用例,1≤T≤3000,1≤D≤T,1≤M≤1500。

输入样例:
1 6 3
输出样例:
5

解题思路:
在每个时刻都有两种选择:划船或者不划船
每次决策结束后,问题就变成相同形式且规模更小的子问题,就可以用递归求解。
为了避免重复计算,使用记忆型递归进行优化

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>

using namespace std;

const int N = 3010, M = 1510, MOD = 1000000007;

int f[N][N];
int d, t, m;

// 函数功能:返回第h时刻剩余体力为s时所有可能的方案数
int dfs(int h, int s)
{
    if(f[h][s] != -1) return f[h][s]; //如果之前计算过,就直接返回结果

    if(h == t) //递归终止条件
    {
        if(s) return 0;		// 如果到最后一刻体力还没用完则方案不合法
        else return 1;		//到最后一刻体力用完,方案合法
    }
    
    if(d + 2 * (m - s) - h <= 0) f[h][s] = 0; //如果在当前情况下消耗所有的体力都不能成功,则方案数为0,无解
    else 
    {
        f[h][s] = dfs(h+1, s) % MOD; 	//不划
        if(s > 0) f[h][s] = (f[h][s] + dfs(h+1, s - 1)) % MOD;  //划
    }
    
    return f[h][s]; 
}

int main()
{
    cin >> d >> t >> m;
      
    memset(f, -1, sizeof f);  //初始化记忆数组为-1
    cout << dfs(0, m) << endl;
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值