最小生成树之Kruskal算法

Kruskal算法的基本思想:

1、先将图中的边按照权值(边长)从小到大排序

2、从排好序的边集合中每次选取一条边,只要选取的边不会构成回路就选择此边

3、重复2直到遍历完所有边

用一个数组T[N]表示每个顶点的父节点,初始化T[i] = -1 。 每次选择边的时候讲其中一个顶点的父节点设为边的另一顶点。使用递归函数压缩使每个顶点直接指向父节点,优化查询过程。若新加入边的两个顶点的父节点一致说明构成了回路,这条边丢弃。

示例代码:

#include<iostream>
#include<string>
#include<algorithm>
#include<windows.h>
#define N 1001
using namespace std;
struct edge
{
    int v1,v2;
    int distance;
};
int T[N];
struct edge way[N];

int findRoot(int x)
{
    if(T[x] == -1)
    {
        return x;
    }else
    {
        return T[x] = findRoot(T[x]);  // 起到了路径压缩的作用,让顶点直接指向父节点 
    }
}
int cmp(edge a,edge b)
{
    return a.distance < b.distance;
}
int main()
{
    int n,m,i,j;
    cin>>n>>m;
    memset(T,-1,sizeof(T));
    for(i = 1; i <= m; i++)
    {
        cin>>way[i].v1>>way[i].v2>>way[i].distance;
    }
    // 将边按权值从小到大排序 
    sort(way+1,way+1+m,cmp);
    int ans = 0;
    for(i = 1; i <= m; i++)
    {
        int x = findRoot(way[i].v1);
        int y = findRoot(way[i].v2);
        if(x != y) //  没有相同的父节点便不会构成回路 
        {
            T[x] = y;
            ans += way[i].distance;
        }   
    }
    int count = 0;
    for(i = 1; i <= n; i++)
    {
        if(T[i] == -1)
        {
            count++;
        }
    }
    if(count == 1)
    {
        cout<<"最短路径总长度:"<<ans<<endl;
    }else
    {
        cout<<"图不联通的哦"<<endl; 
    }
    
    system("pause"); 
    return 0;
} 
图的连通性判断,若最后还有一个以上的顶点的T[i] = -1,说明有孤立的点,即图不联通

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值