7个免费且资源丰富的电子书网站,98%的书籍都能下载

分享7个免费且资源丰富的电子书网站,涵盖了各种小说、漫画、文学小说、心理书、大学教材等电子版书籍,个个下载无套路,喜欢看电子书的建议收藏!

1、熊猫搜书

https://xmsoushu.com/#/

一个非常强大的搜书网站,它的页面左侧提供了各种搜书工具,国内外的电子书几乎都可以免费下载,选择一个自己喜欢的搜书工具,支持输入书名、作者、以及出版社等关键词查找书籍。

找到的电子书基本上提供了PDF、TXT、EPUB等格式,下载的电子书可以直接打开阅读。

img

2、心晴

http://www.ixinqing.com/

一个心理学入门必备的心理学书籍网站,同时还提供了免费的心理学课程,打开页面就可以看到很多关于心理学的书籍,全部都是最近热门的心理学书籍。

img

初入门者不知道看那些心理学的话,还可以从大家最近阅读的人气推荐、收藏最多、更新阅读选择自己要看的心理学书籍,每本书籍都支持免费在线阅读。

img

3、搜书网

https://www.soushu.vip/

一个完全免费的电子书网站,它将所有的电子书都展示在页面,打开页面就能看到大量的免费电子书,包括国内外的小说、名著、传记、商业等类型的电子书都能下载。

它还支持强大的电子书搜索,直接输入书名就能快速找到想看的电子书,每本书籍都提供了epub格式,无需登录可直接免费下载。

img

4、芒果读书

https://diumx.com/

一个资源超丰富的电子书网站,涵盖了各种风格电子小说,包括经典名著、科幻悬疑、人物传记、都市言情、现代文学、悬疑恐怖、科幻小说等电子版书籍都能免费下载。

img

网站还根据不同的小说进行了详细分类,支持搜索、预览的方式查找电子书,找到自己喜欢的电子书,点击查看详情下面会看到详细的下载教程,根据提示进行下载就可以获取整本的epub格式的电子书。

img

5、连载漫画

https://www.shuxiangjia.cn/

一个专门提供漫画小说的网站,还能找到正在连载更新的漫画,页面上的所有漫画基本上都是最近更新,而且还对不同的漫画进行了标签分类,包括科幻未来、武侠、纯情少女、恋爱生活、推理悬疑等。

下载也很简单,找到喜欢的漫画后打开查看详情页,下滑页面就可以看到下载按钮。

img

6、书格

https://new.shuge.org/

一个自由开放的在线古籍电子书网站,能在这里找到最优价值的古籍善本以及各种艺术作品,站内的收录古籍书类型包括经部、史部、绘画、哲学、语言文学、社会科学、艺术等类型的电子书。

img

这里的每本书籍都提供了epub下载格式,它的每本古籍都会呈现出最高质量的样貌,带有图片的书籍还支持单独下载图片。

img

7、lorefree

https://ebook2.lorefree.com/

一个收录上超7万本免费的电子书网站,提供的书籍类型很丰富,包括国外的小说、大学教材、言情小说、诗词、文学小说、漫画、传记等电子书都可以免费下载。

img

它的每本书籍都提供了单独的下载方式,找到书籍后下滑页面就可以看到下载链接,根据提示就可以下载到正本电子书。

img

上面和大家分享的免费下载的电子书的网站,下载后的电子书因为格式问题无法直接打开阅读的话,分享一个我经常用到的电子书格式转换工具-迅捷PDF转换器,可以免费批量将下载d epub、MOBI、AZW3等电子书格式转换成PDF或Word文档。

转换方法很简单,比如PDF转epub格式,直接点击转epub,上传下载的电子书文件,很快就可以将下载的PDF格式转换成epub格式。

img

以上就是这次和大家分享的免费下载电子书网站,喜欢看电子书的朋友看完记得收藏起来,也可以添加到浏览器的收藏夹,随时都可以打开阅读。

转载:7个免费且资源丰富的电子书网站,98%的书籍都能下载

### 使用GIoU改进YOLOv3、YOLOv4或YOLOv5的方法及实现 #### GIoU简介 Generalized Intersection over Union (GIoU) 是一种扩展的交并比计算方式,它不仅考虑了预测框和真实框的重叠区域,还考虑了包围两个框的最小闭包区域。这种方法能够更好地指导模型学习边界框回归任务,从而提升目标检测精度[^1]。 #### 改进YOLO系列算法的具体方法 ##### 1. 替换原有的损失函数 在YOLOv3、YOLOv4或YOLOv5中,默认使用的损失函数通常是基于IoU(Intersection over Union)的。为了引入GIoU,需要替换原有损失函数的部分逻辑为GIoU损失函数。具体来说,在训练阶段,可以通过修改代码来实现这一功能: ```python import torch from torchvision.ops import generalized_box_iou_loss def compute_giou_loss(pred_boxes, target_boxes): """ 计算GIoU损失 :param pred_boxes: 预测框张量,形状为[N, 4] :param target_boxes: 真实框张量,形状为[N, 4] :return: GIoU损失值 """ loss = generalized_box_iou_loss(pred_boxes, target_boxes) return loss.mean() ``` 上述代码展示了如何利用PyTorch内置的功能`generalized_box_iou_loss`快速实现GIoU损失计算。 ##### 2. 修改配置文件 对于YOLOv5而言,通常会有一个`.yaml`格式的配置文件定义网络结构以及训练参数。如果要集成GIoU,则需调整该文件的相关部分以支持新的损失函数。例如,在`loss`字段下新增一项指向自定义GIoU损失函数的位置。 另外需要注意的是,当切换到更复杂的IoU变体如DIoU、CIoU时,可能还需要额外安装依赖库或者手动编码这些高级版本的距离度量公式[^2]。 ##### 3. 调整锚点生成策略 虽然这一步并非绝对要,但如果计划深入优化整个系统表现的话,重新设计适合新指标特性的先验候选区生成机制也可能带来一定增益效果。比如依据历史数据统计分析结果动态调整初始尺度设定等等[^3]。 #### 实现注意事项 - **硬件需求**: 如果打算大规模实验不同类型的IoUs及其组合形式对最终成果的影响程度对比测试等工作负载较大情况下建议采用GPU加速环境运行程序。 - **调试技巧**: 开始之前最好保留一份原始项目副本以便随时回滚更改;同时记录每次改动前后各项关键性能指标变化情况方便后续总结规律得出结论。 ```bash # 安装要的Python库 pip install torch torchvision opencv-python-headless matplotlib seaborn pandas scikit-image tensorboard pytorch-lightning tqdm ``` 以上命令可以帮助准备开发所需的软件工具链集合。 --- ###
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值