需求:有100个文件(每个大概10G,300万个样例)每个样例可以得到对应的类别属性属性值。统计属性值出现的次数
类似 wordcount
其中 word 是 类(cat1-cat3)属性属性值
mapper.py
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import sys
reload(sys)
sys.setdefaultencoding("utf-8")
import json
import os
for line in sys.stdin:
s = line.split('\t')[1]
obj = json.loads(s)
cat = ''
cat = obj['l_cat'][0] + '-' + obj['l_cat'][2]
word = ''
word = cat + ',' + 'cat_3' +','+cat
print '%s\t%s' % (word, 1)
word = ''
word = cat + ','+'brand'+','+obj['brand']
print '%s\t%s' % (word, 1)
for att, val in obj['d_attr'].items():
if att =='商品毛重' or att == '商品名称' or att == '商品编号' \
or att == '货号' or att == '店铺' or len(val)>10:
continue
word = ''
word = cat+','+att+','+val
print '%s\t%s' % (word, 1)
reducer.py
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import sys
current_word = None
current_count = 0
word = None
for line in sys.stdin:
line = line.strip()
word, count = line.split('\t', 1)
try:
count = int(count)
except ValueError:
continue
if current_word == word:
current_count += count
else:
if current_word:
print '%s\t%s' % (current_word, current_count)
current_count = count
current_word = word
if current_word == word:
print '%s\t%s' % (current_word, current_count)
本地测试 part-00000-sample是输入 ,输出到out
cat part-00000-sample | python mapper.py | sort -k 1 | python reducer.py>out
查看测试的结果
cat out|less
本地测试成功了才可以提交到Hadoop 上
通过脚本提交到Hadoop 上
!!!若Hadoop上python 版本低,需将python 环境打包到Hadoop上
-cacheArchive "/app/ssg/nlp/uu/linzhiwei02/tools/python27.tar.gz#python27"\
参考文献 https://zhuanlan.zhihu.com/p/34903460
脚本 run_hadoop.sh
#!/bin/bash
hadoop="/home/linzhiwei02/tools/hadoop-client-heng/hadoop/bin/hadoop"
$hadoop streaming \
-D mapred.job.queue.name="nlp"\
-D mapred.job.name="nlp-linzhiwei02-count-item"\
-D mapred.job.priority=NORMAL \
-D mapred.map.tasks=400 \
-D mapred.reduce.tasks=100\
-cacheArchive "/app/ssg/nlp/uu/linzhiwei02/tools/python27.tar.gz#python27"\
-input "/app/ssg/nlp/uu/linzhiwei02/commodity_title/20180315_label" \
-output "/app/ssg/nlp/uu/linzhiwei02/Output5" \
-file ./mapper.py \
-file ./reducer.py\
-mapper "python27/bin/python mapper.py" \
-reducer "python27/bin/python reducer.py" \
-partitioner "org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner"
注意反斜杠之后回车,不能有多余的空格
解压之后的python 的路径要添加到 -mapper 和 -reducer 中