力扣 741. 摘樱桃

题目来源:https://leetcode.cn/problems/cherry-pickup/

大致题意:
给定一个二维数组1,其中数组元素由 0,1,-1 表示,有以下含义:

  • 0 表示该位置可以通行
  • 1 表示该位置有 1 个樱桃,经过可以摘 1 个樱桃,摘过后变为 0
  • -1 表示该位置不能通行

求从左上角移动到右下角(只能往右往下移动),再从右下角移动到左上角(只能往左往上移动)最多能摘多少樱桃

思路

从右下角移动到左上角的过程等价于从左上角移动到右下角,所以本题等价于两个人从左上角移动到右下角,最多能摘多少樱桃

使用 dp[k][i1][i2] 表示两个人都走了 k 步,当前第一个人在 i1 行、第二个人在 i2 行的分数(摘樱桃个数)

因为方向已知,所以可以通过步数和行求出列,比如走了 k 步,当前第一个人在 i1 行时,第一个人在 k - i1 列

那么 dp[k][i1][i2] 可以从 dp[k - 1][i1][i2]、dp[k - 1][i1 - 1][i2]、dp[k - 1][i1][i2 - 1]、dp[k - 1][i1 - 1][i2 - 1] 四个组合到达,取四个组合的最大得分加上当前两个人所在位置的樱桃数即可

需要注意的是,如果当前两个人位置相同且当前位置都有樱桃,那么当前两个人所在位置的樱桃数为 1 而不是 2(1 个樱桃只能摘一次)

代码:

public int cherryPickup(int[][] grid) {
        int n = grid.length;
        int m = n * 2 - 1;
        // dp[k][i1][i2] 两个人都走了 k 步,当前第一个人在 i1 行、第二个人在 i2 行的分数(摘樱桃个数)
        int[][][] dp = new int[m][n][n];
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                Arrays.fill(dp[i][j], Integer.MIN_VALUE);
            }
        }
        // 出发时的状态
        dp[0][0][0] = grid[0][0];
        for (int k = 1; k < m; k++) {
            // 枚举第一个人的位置
            // Math.max(k - n + 1, 0) 是当前第 k 步时,行能取的最小值
            // Math.min(k, n - 1) 是当前第 k 步时,行能取的最大值
            for (int i1 = Math.max(k - n + 1, 0); i1 <= Math.min(k, n - 1); i1++) {
                // 求出第一个人的列
                int j1 = k - i1;
                // 如果该位置不能通行,直接跳过
                if (grid[i1][j1] == -1) {
                    continue;
                }
                // 枚举第二个人的位置
                for (int i2 = Math.max(k - n + 1, 0); i2 <= Math.min(k, n - 1); i2++) {
                    // 求出第二个人的列
                    int j2 = k - i2;
                    // 如果该位置不能通行,直接跳过
                    if (grid[i2][j2] == -1) {
                        continue;
                    }
                    // 求出能到达当前位置的最大得分
                    int res = dp[k - 1][i1][i2];
                    if (i1 > 0) {
                        res = Math.max(res, dp[k - 1][i1 - 1][i2]);
                    }
                    if (i2 > 0) {
                        res = Math.max(res, dp[k - 1][i1][i2 - 1]);
                    }
                    if (i1 > 0 && i2 > 0) {
                        res = Math.max(res, dp[k - 1][i1 - 1][i2 - 1]);
                    }
                    // 加上当前位置樱桃数
                    res += grid[i1][j1];
                    // 若位置相同,樱桃数只加一次
                    if (i1 != i2) {
                        res += grid[i2][j2];
                    }
                    dp[k][i1][i2] = res;
                }
            }
        }
        // 有可能不能到达右下角
        return Math.max(dp[m - 1][n - 1][n - 1], 0);
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三更鬼

谢谢老板!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值