数据结构—复杂度讲解
1.算法效率
1.1一个算法的好坏
当我们碰到一个问题,并且拥有许多解决这个问题的算法时,我们就会想应该选择哪一种算法合适,要想比较各个算法的好坏,我们就要用到数据结构的复杂度内容来判断,通过复杂度我们可以做到不用计算机实际运行算法来预估算法的性能,而是通过分析算法的复杂度来预估算法的性能。
1.2 算法的复杂度
算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般 是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
**时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。**在计算 机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计 算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。
2.时间复杂度
2.1时间复杂度的概念
时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一 个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知 道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,而且执行时间还会受环境影响,比如计算机本身的算力,不同的操作系统等,所以才有了时间复杂度这个 分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法 的时间复杂度。
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。
2.2大O的渐进表达式
为了方便的比较各个算法的时间复杂度,我们引入大O的渐进表达式。
大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶的方法:
用常数1取代运行时间中的所有加法常数。
在修改后的运行次数函数中,只保留最高阶项。
//当时间复杂度的函数中的自变量无限大的时候,除最高阶项以外,对函数值的影响极小,并且大O渐进表示法是估算算法运行
//次数所属的量级,去掉了那些对结果影响不大的项,能够简洁明了的表示出了执行次数。
3.如果最高阶存在且不是1,则去除与这个项目相乘的常数(系数)。得到的结果就是大O阶。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)
补充:关于第1点,为什么可以用1取代运行时间中的所有加法常数:
这其实都源自于如今计算机的算力,即使是次数相差特别大,所花费的时间也十分相近。
//示例代码1
#include <stdio.h>
#include <time.h>
int main()
{
size_t begin = clock();
size_t n = 0;
for (size_t i = 0; i < 100; i++)//执行次数为100
{
n++;
}
size_t end = clock();
printf("%d毫秒\n", end - begin);
return 0;
}
结果演示:
//示例代码2
#include <stdio.h>
#include <time.h>
int main()
{
size_t begin = clock();
size_t n = 0;
for (size_t i = 0; i < 100; i++)//执行次数为100000000(1亿)
{
n++;
}
size_t end = clock();
printf("%d毫秒\n", end - begin);
return 0;
}
结果演示:
以上两个示例是在debug版本下执行
观察上面两个示例,我们就能发现执行100次和执行100000000次也只是相差了几十毫秒,并且随着计算机的算力越来越强,
这个差距会越来越小,以上两个示例是在debug版本下执行的,没有经过任何优化,如果在release版本下我们再来尝试以下:
示例1结果演示:
示例2结果演示:
结果我们能发现执行100次和执行100000000次相差不到1毫秒,因此我们可以大胆的用1代表常数次。
2.3时间复杂度计算举例
//示例1
// 计算Func2的时间复杂度?
void Func2(int N)
{
int count = 0;
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}
//示例2
// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
int count = 0;
for (int k = 0; k < M; ++ k)
{
++count;
}
for (int k = 0; k < N ; ++ k)
{
++count;
}
printf("%d\n", count);
}
//示例3
// 计算Func4的时间复杂度?
void Func4(int N)
{
int count = 0;
for (int k = 0; k < 100; ++ k)
{
++count;
}
printf("%d\n", count);
}
//示例4
// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );
//strchr函数的大致实现为:
{
while (*str)
{ if (*str == character)
return str;
else
str++;
}
}
//最坏情况是遍历所有元素也就是N次
//示例5
// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
//第一次外层循环执行一次,内层循环执行N - 1次
//第二次外层循环执行一次,内层循环执行N - 2次
// .
// .
// .
//第N - 1次外层循环执行一次,内层循环执行1次
//第N次外层循环执行一次,内层循环执行0次
//由于时间复杂度的大O渐进法只是粗略的估计,因此只需要考虑循环次数这个重要的部分,
//当然也可以把加上exchange = 0;之类的语句次数,但不影响最后所算出的量级,因此忽略
//把所有循环次数相加得n(n - 1)/ 2
//示例6
// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
assert(a);
int begin = 0;
int end = n-1;
// [begin, end]:begin和end是左闭右闭区间,因此有=号
while (begin <= end)
{
int mid = begin + ((end-begin)>>1);
if (a[mid] < x)
begin = mid+1;
else if (a[mid] > x)
end = mid-1;
else
return mid;
}
return -1;
}
//每次查找如果找不到就会把数据减少一半,所以最坏的情况就是数据的数量不断折半,最后只剩一个数
//也就是说N个数据每次查找数据个数除以2,假设执行x次
//也就是N/2^x = 1为最坏情况的查询次数表达式
//x解得 = 以2为底,n的对数(log2 N)
//示例7
// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
if(1 == N)
return 1;
return Fac(N-1)*N;
}
//每次调用fac函数执行次数为1(常数次),调用了N次
总结:
递归时间复杂度计算方法:
每次递归的执行次数相加
//示例8
// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}
关于示例8:
函数的调用像一个细胞分裂一样,每层调用次数都是上一层的调用次数的2倍,并且每次调用的时间复杂度是O(1),
利用等比数列的求和公式,我们可以算出其时间复杂度是O(2^N),当然这个函数的调用过程中会产生如右边的三角形一样提前停止的情况
但是时间复杂度本身就是估计值,因此不考虑这部分减少的时间复杂度。
- 实例1基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)
- 实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)
- 实例3基本操作执行了10次,通过推导大O阶方法,时间复杂度为 O(1)
- 实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)
- 实例5基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最 坏,时间复杂度为 O(N^2)
- 实例6基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) 注:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。
- 实例7通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。
- 实例8通过计算分析发现基本操作递归了2N次,时间复杂度为O(2N)。
3.空间复杂度
空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。 空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。
注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因 此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。
//示例1
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
//函数除了参数以外额外开辟的空间只有变量end,exchange,i的空间
//示例2
// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
if(n==0)
return NULL;
long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n ; ++i)
{
fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
}
return fibArray;
}
//函数除了参数首先是动态开辟了N+1个变量的空间
//其次是开辟了变量i
//根据大O渐进表示法我们只要考虑主要占用的空间也就是动态开辟的空间
//示例3
// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
if(N == 1)
return 1;
return Fac(N-1)*N;
}
//Fac函数每次调用不创建额外的新变量,但是因为函数调用就会创建栈帧,因此创建0个额外变量也可看作是创建常数个变量
//每次调用的空间复杂度为O(1),不断调用会调用N次,创造N个栈帧
总结:
递归空间复杂度计算方法:
每次递归的变量数相加
//示例4
// 计算斐波那契递归Fib的空间复杂度?
long long Fib(size_t N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}
关于示例4,在上面我们已经分析过了时间复杂度为O(2^N),其空间复杂度呢?
关于其空间复杂度的分析,我们必须知道时间是一去不复返的,但空间是可以重复利用的
函数在调用时会顺着图中箭头一样顺着一侧进行调用,而不是像图中一样一层一层调用,
因此空间使用最多时也只调用Fib(N)到Fib(2),也就是说该函数的空间复杂度为O(N)。
- 实例1使用了常数个额外空间,所以空间复杂度为 O(1)
- 实例2动态开辟了N个空间,空间复杂度为 O(N)
- 实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)
4.复杂度对比
常见复杂度对比:
写作不易,如有问题还请各位指出。