深度学习笔记
文章平均质量分 80
Pytorch、TensorFlow、Neo4j等等的学习笔记
懒回顾,半缘君
音视频开发,AIGC, AIOT方向
展开
-
深度学习配置2
哇偶画图教程(梗直哥)牛逼画图:pyecharts点这里弄不了点这里原创 2023-05-19 20:43:15 · 191 阅读 · 0 评论 -
d2l的一些理论知识的整理【1】
我们可以通过基本层类设计自定义层。这允许我们定义灵活的新层,其行为与深度学习框架中的任何现有层不同。在自定义层定义完成后,我们就可以在任意环境和网络架构中调用该自定义层。层可以有局部参数,这些参数可以通过内置函数创建。原创 2023-05-12 16:16:40 · 2652 阅读 · 0 评论 -
pytorch应用(入门5)CNN卷积神经网络、提取层结构、提取参数
卷积网络在计算机视觉领域被应用得非常广泛,那么常见的卷机网络中用到的模块能够使用 pytorch 非常轻松地实现,下面我们来讲一下 pytorch 中的卷积模块有时候提取出的层结构并不够,还需要对里面的参数进行初始化,那么如何提取出网络的参数并对其初始化呢?如何对权重做初始化呢?非常简单,因为权重是一个Variable,所以只需要取出其中的data属性,然后对它进行所需要的处理就可以了。下面是模板性的代码:通过上面的操作,对将卷积层中使用PyTorch里面提供的方法的权重进行初始化,原创 2023-01-01 21:16:58 · 1700 阅读 · 0 评论 -
pytorch应用(入门4)MLP实现MNIST手写数字分类
前面一章我们简要介绍了神经网络的一些基本知识,同时也是示范了如何用神经网络构建一个复杂的非线性二分类器,更多的情况神经网络适合使用在更加复杂的情况,比如图像分类的问题,下面我们用深度学习的入门级数据集 MNIST 手写体分类来说明一下更深层神经网络的优良表现。这里其实最有用的是看最后的画图是怎么画的。原创 2023-01-01 16:33:48 · 2382 阅读 · 2 评论 -
pytorch应用(入门3) 多项式回归
通过上面这个函数我们每次取batch_size 这么多个数据点,然后将其转换成矩阵的形式,再把这个值通过函数之后的结果也返回作为真实的目标。但是我画不出来,头秃……在PyTorch里面使用。原创 2022-12-30 18:16:48 · 393 阅读 · 0 评论 -
pytorch应用(入门2) 一维线性回归
书中作者的代码不知道是哪年的,自己敲的时候没报错,我敲的时候就报错了,根据报错信息来看,应该是版本不一样导致的语法修改。在做one classification的时候,训练集和测试集的样本分布是不一样的,尤其需要注意这一点。看到这里,如果代码不太懂的可能有点懵,不过深度学习的代码就是这样,分几个层次来构建一个完整的模型。大家注意看我的代码都是由哪几部分组成的,构建深度学习项目其实就是大概的几部分了。在代码实现的过程中我又又报错了,然后我心平气和地去找改错的博文,两种方式,各有各的不同之处。原创 2022-12-30 17:03:05 · 811 阅读 · 0 评论 -
pytorch应用(入门1)
a = torch . Tensor([ [ 2 , 3 ] , [ 4 , 8 ] , [ 7 , 9 ] ]) # 三行两列的矩阵 print('a is {}' . format(a)) print('a size is {}' . format(a . size()))我费了好大劲,不知道为啥我的VScode运行不了pytorch,老是显示有错误。我放到jupyter notebook上之后就好了……上面的代码内容牵扯到的语法教程。原创 2022-12-28 16:58:20 · 423 阅读 · 0 评论