二进制代码运算规律是逢二进一

它由两个基本字符0,1组成,二进制代码运算规律是逢二进一。
十进制1,
二进制也是1;
十进制2(1+1),
二进制为10;
十进制3(1+1+1),
二进制为11;
十进制4,
二进制为100……
也就 是说,用二进制做十进制的加法时是逢二进一!
表述:为区别于其它进制代码,二进制代码的书写通常在数的右下方注上基数2,或加后面加B表示。

package Com.TableTest;
import java.util.Map;
import org.apache.commons.lang.ArrayUtils;
public class TableText_08 {
  public static void main(String[] args) {
    String[][] countries = { { "United States", "New York" }, { "United Kingdom", "London" },
        { "Netherland", "Amsterdam" }, { "Japan", "Tokyo" }, { "France", "Paris" } };
    Map countryCapitals = ArrayUtils.toMap(countries);
    System.out.println("Capital of Japan is " + countryCapitals.get("Japan"));
    System.out.println("Capital of France is " + countryCapitals.get("France"));
  }
}

二进制代码的运算规律确实是“逢二进一”,这与我们平时使用的十进制数“逢十进一”的规则类似,但是基数不同

以下是二进制数的基本运算规则:

1. 加法

二进制加法的规则是“逢二进一”。具体来说,从右往左(也就是从低位到高位)逐位相加,如果和大于等于2,就向高位进位。

例如:

  1011  (这是二进制数11)
+ 1010  (这是二进制数10)
-------
 10101 (这是二进制数21)

在这个例子中,从右往左逐位相加:

  • 最低位:1 + 0 = 1,没有进位。
  • 下一位:1 + 1 = 10(二进制中的10),需要向高位进位,所以该位写0,向高位进1。
  • 下一位:0 + 0 + 进位1 = 1,没有进位。
  • 最高位:1 + 1 = 10(二进制中的10),需要向更高位进位,但这里没有更高位了,所以我们直接写0,表示这是一个溢出错误。但在实际计算中,我们通常会忽略这种溢出,只保留有效位数。

注意:在实际的二进制加法中,我们不会真的写出进位1,而是直接在心中记住它,并在下一位的计算中使用它。上面的例子只是为了说明进位的概念。

2. 减法

二进制减法的规则是“借一当二”。具体来说,从右往左(也就是从低位到高位)逐位相减,如果当前位的被减数小于减数,就需要从高位借1,然后当前位加上2再减。

3. 乘法

二进制乘法的规则与十进制乘法类似,但是每一位的乘积都是基于2的幂次方。具体来说,从右往左(也就是从低位到高位)逐位相乘,并将结果左移相应的位数。

4. 除法

二进制除法的规则与十进制除法类似,但是每一位的商都是基于2的幂次方。具体来说,从左往右(也就是从高位到低位)逐位进行除法运算,并记录下商和余数。

在C++和Python等高级编程语言中,通常不需要直接处理二进制数的运算,因为这些语言都提供了内置的整数类型和运算符,可以自动处理不同进制的数。但是,在某些情况下,了解二进制数的运算规律仍然是有用的,比如在进行位操作或者优化性能时。
计算机中数据运算的规律主要基于二进制系统,这是因为计算机内部的所有信息都是以二进制形式存储和处理的。以下是计算机中数据运算的基本规律:

二进制运算规律

  • 加法:逢二进一,即0+0=0,1+0=1,0+1=1,1+1=10(进位)。
  • 减法:借一当二,即0-0=0,1-0=1,1-1=0,0-1=1(借位)。
  • 乘法:逐位相乘,结果左移相应位数。例如,11=1,10=0,01=0,00=0。
  • 除法:逐位相除,记录商和余数。

符号数的表示

  • 原码:最高位表示符号,0表示正数,1表示负数。
  • 反码:正数不变,负数除符号位外按位取反。
  • 补码:正数不变,负数反码加1。

运算中的溢出处理

  • 当运算结果超出数据类型的表示范围时,会发生溢出。例如,对于8位二进制数,其表示范围为-128到127。当计算结果超出此范围时,会发生溢出,导致结果不正确。

计算机中的数据运算规律是建立在二进制系统之上的,这些规律确保了数据在计算机中的正确处理和存储。了解这些基本规律对于编程和计算机科学领域是非常重要的。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值