(快速幂求逆元得到组合数)Mar/24/2020 16:46UTC+8Div2 D - Count the Arrays

5 篇文章 0 订阅
4 篇文章 0 订阅

快速幂 + 逆元 + 组合数
题目链接
题解链接
快速幂求逆元
关键:求解 a / b (mod p) – a b 很大无法直接约分
利用x = a^{p-2} (mod p) [基于费马小定理] 使用前提使p必须为质数
否则 应该利用扩展欧几里得来求逆元。

#include <iostream>
#include <cstdio>

using namespace std;

#define LL long long
const int mod = 998244353;

int read()
{
	int x = 0, w = 1;
	char ch = getchar();
	while(ch < '0' || ch > '9')
	{
		if(ch == '-') w = -1;
		ch = getchar();
	}
	while(ch <= '9' && ch >= '0')
	{
		x = x * 10 + ch - '0';
		ch = getchar();
	}
	return x * w;
}

LL qpow(LL a, LL n)  //计算a^n % mod    快速幂 
{
    LL x = 1;
    while(n)
    {
        if(n & 1) //判断n的最后一位是否为1
		{
			x = (x * a) % mod;
        }
        n >>= 1;  //舍去n的最后一位
        a = (a * a) % mod;  //将a平方
    }
    return x % mod;
}

LL ny(LL x) // 利用快速幂求逆元 
{
	return qpow(x, mod - 2);
}

LL C(int a, int b) // 求组合数 
{
	LL a1 = 1;
	for(int i = a; i >= a - b + 1; i--)
	{
		a1 *= i;
		a1 %= mod;
	}
	LL a2 = 1;
	for(int i = 1; i <= b; i++)
	{
		a2 *= i;
		a2 %= mod;
	}
	LL ni = ny(a2);
	return (ni * a1) % mod;
}

int main()
{
	int n, m;
	cin >> n >> m;
	LL c1 = C(m, n - 1);
	LL c2 = C(n - 2, 1);
	LL p = 1;
	for(int i = 1; i <= n - 3; i++)
	{
		p *= 2;
		p %= mod;
	}
	
	cout << ((c1 * c2) % mod * p) % mod;
	 
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值