tensorflow
tensorflow
csdnhuizhu
这个作者很懒,什么都没留下…
展开
-
如何设置输出优先级,补集
如何设置输出的优先级1.应该充分利用'if return。放在前面的if 优先级高,因为一旦满足某个if ,说明,后面的if 已经不会执行,直接return。2.name for name in api_names if name not in deprecated_api_names3.下面代码参考的是tensorflow的代码def get_canonical_name(api_names, deprecated_api_names): """ Get preferred endpoi原创 2020-07-11 10:41:49 · 282 阅读 · 0 评论 -
python 关于类的__call__(self,...)的使用
一个没有__call__(self,…)的类,一个有__call__(self,…)的类class Name(object): def __init__(self,name1,name2,name3): self._name1 = name1 self._name2 = name2 self._name3 = name3 def set_name(self,name1_changed,name2_changed,name3_changed): self._name1 = name1_原创 2020-07-10 22:01:28 · 1236 阅读 · 0 评论 -
tensorflow:numpy.ndarray转为tensor
1.tf.multiply(X,1)2. tf.reshape(X,…)原创 2020-06-20 18:24:18 · 3114 阅读 · 0 评论 -
plt.imshow()的输入
plt.imshow()的输入可以是numpy.ndarray也可以是tensorflow.python.framework.ops.EagerTensor原创 2020-06-20 18:06:41 · 3874 阅读 · 2 评论 -
tf.stack
另外def stack(values, axis=0, name="stack"): """Stacks a list of rank-`R` tensors into one rank-`(R+1)` tensor. See also `tf.concat`, `tf.tile`, `tf.repeat`. Packs the list of tensors in `values` into a tensor with rank one higher than each ten.原创 2020-06-20 17:23:53 · 157 阅读 · 0 评论 -
tf.Assert/tf.control_deopendencies
case one:case twocase three原创 2020-06-20 15:13:08 · 139 阅读 · 0 评论 -
tf.equal()
原创 2020-06-18 22:01:21 · 217 阅读 · 0 评论 -
tf.shape()/.shape/XX.get_shape()
1.2.3.4.原创 2020-06-18 21:57:34 · 153 阅读 · 0 评论 -
tf.rank
原创 2020-06-18 21:42:27 · 180 阅读 · 0 评论 -
异常处理 raise ValueError
原创 2020-06-18 17:26:36 · 14325 阅读 · 0 评论 -
tesorflowEstimator
tensorflow Estimatora.bcd.在Estimator对象上调用一个或多个方法,传递合适的输入函数以作为数据源。从Keras 模型到Estimator模型1.Estimator是Tensorflow完整模型的高级表示,它被设计用于轻松拓展和异步训练2. 在Tensorflow2.0 kerasAPI 可以完成许多相同的任务,而且被认为是一个更容易学习的API3. 设定好了数据后,可以使用Tensorflow Estimator定义模型。4. Estimator是从tf.estima原创 2020-06-17 22:05:14 · 205 阅读 · 0 评论 -
tensorflow:Dense layer参数计算
原创 2020-06-16 09:38:01 · 1151 阅读 · 0 评论 -
tesnsorflow2 为何要进行数据规范化?
要注意每个特征的范围有什么不同。使用不同的尺度和范围对特征归一化是好的实践。尽管模型可能在【没有特征归一化的情况下收敛】,但是这种情况会使得模型训练更加复杂,并会使得生成的模型依赖输入所对应的单位选择。...原创 2020-06-15 22:40:10 · 125 阅读 · 0 评论 -
tensorflow2自定义训练 【这里包含了如何绘制训练过程中参数的变化append ,plot,如何绘制数据集scatter】
1.Tensorflow中的tensor是不可变无状态对象.机器学习模型需要可改变状态,比如模型训练和模型预测的代码是相同的,但变量值随着时间而不同(希望尽量小的loss),为了因对随着计算而改变的状态,可以利用Python的状态可变性。2.Tensorflow,拥有内建可变状态操作,比使用底层Python状态表示更常见。比如表示模型的权重,使用Tensorflow变量更方便高效。变量是一个对象,这个对象存储着数值,当在Tensorflow计算中使用时,会隐式的读取这个存储的数值。有一些操作(tf原创 2020-06-13 16:33:23 · 1315 阅读 · 0 评论 -
tf.stack,tf.argmax,SparseCategoricalCrossentropy: loss_object
def stack(values, axis=0, name="stack"): """Stacks a list of rank-`R` tensors into one rank-`(R+1)` tensor. See also `tf.concat`, `tf.tile`, `tf.repeat`. Packs the list of tensors in `values` into a tensor with rank one higher than each tensor原创 2020-06-13 15:48:50 · 233 阅读 · 0 评论 -
tensorflow2.2自定义层
1.most TensorFlow APIs are usable with eager execution.原创 2020-06-05 21:51:45 · 363 阅读 · 0 评论 -
tf.data.Dataset.batch
combines consecutive elements of this dataset into batches. 两种情况取决于是否要最后那个个数不足的batchdataset = tf.data.Dataset.range(8)dataset = dataset.batch(3)print(list(dataset.as_numpy_iterator()))输出[array([0, 1, 2], dtype=int64), array([3, 4, 5], dtype=int64), a原创 2020-05-27 21:53:42 · 2118 阅读 · 0 评论 -
numpy一个数组的存储、读取/多个数组的存储、读取 np.save/np.savez/np.load
numpy 数组的存储一个数组的情况method1: 可取 save--->.npy ----.load()method2:savez--->.npz---->load() 是能存取,但是显示不出来method3 savez(,a=a)---->npz--->load 可取多个数组的情况method1: save--->npy---->load虽然没有报错,但其实只能存取一个数组method2: savez ----npz-----load一个数组的情况meth原创 2020-05-27 17:41:52 · 5245 阅读 · 0 评论 -
data structure/查看所形成的数据的结构
如何查看tensorflow创建的数据的结构1.dataset.element_spec 看的没有那么清楚,因为还有数据类型夹杂着2. print(dataset)1.dataset.element_spec 看的没有那么清楚,因为还有数据类型夹杂着import tensorflow as tf# for threedataset1 = tf.data.Dataset.from_tensor_slices(tf.random.uniform([4,10])) # a single component原创 2020-05-27 15:26:16 · 427 阅读 · 0 评论 -
Data structure:Dataset.element_spec/
1.用Dataset.element_spec查看一个elementde 的类型 (1 ) fit in a single componentimport tensorflow as tfimport pathlibimport matplotlib.pyplot as pltimport numpy as npdataset1 = tf.data.Dataset.from_tensor_slices(tf.random.uniform([4,10]))print(dataset1.eleme原创 2020-05-26 22:31:33 · 1052 阅读 · 0 评论 -
Dataset object 如何消耗数据三种方式:for/next/reduce
Dataset object 消耗数据的三种方式for 逐个元素输出创造一个Python iterator,用next 逐个消耗 **特别需要注意其用法使用reduce 一次性使用全部的元素==注意==for 逐个元素输出因为Dataset object is a Python iterable.import tensorflow as tfdataset = tf.data.Dataset.from_tensor_slices([8,3,0,8,2,1])print(dataset)for原创 2020-05-26 21:25:55 · 730 阅读 · 0 评论 -
zip() 将两个列表的对应元素组对,成为一个个元组
###testa = [5,6]b = [7,8]c = zip(a,b)for i in c: print(i)输出(5, 7)(6, 8)原创 2020-05-26 16:29:01 · 1767 阅读 · 0 评论 -
将特征与标签相结合成为数据集:form_tensor_slices() /tf.data.Dataset.zip两种方法
方法一 :将两个tensor结合起来import tensorflow as tf# two tensors can be combined into one Dataset object.# method1:features = tf.constant([[1,3],[2,1],[3,3]]) # 3*2 tensorlabels = tf.constant(['a','b','c']) # 3*1 tensor 这个表述很重要,知道tensor是怎么定义维度的print(features原创 2020-05-26 16:28:03 · 1099 阅读 · 0 评论 -
一维列表,二维列表,元组,字典制作数据集
一维列表import tensorflow as tf## for 1D tensor produce **scalar tensor elements**dataset = tf.data.Dataset.from_tensor_slices([1,2,3])print(type(dataset))for element in dataset: print(element)输出<class 'tensorflow.python.data.ops.dataset_ops.T原创 2020-05-26 15:54:52 · 1088 阅读 · 0 评论 -
tensorflow加载数据后数据的类型,tf.newaxis的使用
one# 将程序导入您的程序from __future__ import absolute_import,division,print_function,unicode_literalsimport tensorflow as tf#加载并准备MNIST数据集mnist = tf.keras.datasets.mnist(x_train,y_train),(x_test,y_test) = mnist.load_data()print(x_train[0])x_train,x_test =原创 2020-05-26 11:15:18 · 1023 阅读 · 0 评论 -
labelme 转换数据操作过程
labelme操作流程labelme 安装labelme 标注流程打开图片方法一:Open方法二:Open Dir图像放缩画图(注意要按时针顺序进行标注)保存图像labelme生成标注图像one:labelme 安装看前面的博客【数据标注labelme虚拟环境及安装】labelme 标注流程打开图片方法一:Openopen: 打开单张图片方法二:Open DirOpen Dir:...原创 2020-04-25 18:12:38 · 1665 阅读 · 2 评论 -
3.10【单张图片处理过程】
原本import globimport jsonimport osimport os.path as ospimport numpy as npimport PIL.Imageimport labelmeimport sysinput_dir = './cat_test/' # 里面是含有json文件所处的文件夹output_dir = 'data_dataset_voc' ...原创 2020-04-25 10:41:54 · 320 阅读 · 0 评论 -
3.4AttributeError: module 'labelme.utils' has no attribute 'label_colormap'
尝试一:conda activate labelpip uninstall labelmeconda install labelme -c conda-forge参考关于 -c conda-forge 的解释:linklink出现An HTTP error occurred when trying to retrieve this URL.HTTP errors are o...原创 2020-04-25 10:24:00 · 1294 阅读 · 0 评论 -
3.9 【AttributeError: module 'labelme.utils' has no attribute 'draw_label'】
origin:我的解决办法:输出draw.pyimport ioimport numpy as npimport PIL.Imageimport PIL.ImageDrawdef label_colormap(N=256): def bitget(byteval, idx): return ((byteval & (1 <<...原创 2020-04-25 10:20:35 · 1078 阅读 · 1 评论 -
3.6 【json.load()】
data是一个字典原创 2020-04-24 17:06:52 · 139 阅读 · 0 评论 -
数据标注labelme虚拟环境及安装
step1:再anaconda中创建虚拟环境以专门用来做数据标注的环境打开anaconda promtconda info --envsconda create -n label python=3.7conda activate labelpip install labelme查看是否有labelme这个包conda list直接在label虚拟环境下【在prompt窗...原创 2020-04-15 13:24:47 · 1559 阅读 · 1 评论