Scipy图像模糊处理

# coding = utf-8
# 导入必要的莫快
from PIL import Image
import numpy as np
from scipy.ndimage import filters  # 引入滤波模块
import matplotlib.pyplot as plt 
# 利用scipy进行高斯模糊处理
im = np.array(Image.open
### 数字图像处理中的图像模糊修复 #### 一、技术概述 数字图像处理中,图像模糊修复是一项重要的任务,旨在通过各种算法和技术来改善因成像过程中产生的模糊现象。常见的模糊原因包括运动模糊、离焦模糊等。为了实现有效的模糊修复,通常采用基于模型的方法和数据驱动的方法。 对于运动模糊的修复,可以利用已知或估计的点扩散函数(Point Spread Function, PSF),即传递函数H(u,v)[^2],结合逆滤波(Inverse Filtering)或其他更复杂的去卷积(Deconvolution)算法来进行处理。然而,在实际应用中,由于噪声的存在以及PSF可能不完全准确,简单的逆滤波可能会引入振铃效应(Ringing Effect)等问题,因此需要考虑更为稳健的技术方案。 #### 二、具体方法 1. **经典频域法** - 利用傅里叶变换将空间域上的卷积操作转换到频率域上变为乘法运算,从而简化计算过程。 - 对于给定的模糊核\( H(u,v) \),可以通过求解其逆矩阵\(\frac{1}{H(u,v)}\)来尝试恢复原始信号。但是这种方法容易受到噪声的影响,当\( |H(u,v)| \to 0 \)时会导致数值不稳定性和放大噪声的效果。 2. **正则化方法** - 正则化的目的是在优化目标函数的同时加入额外约束条件以防止过拟合问题的发生。 - 常见的形式有Tikhonov正则化(Tikhonov Regularization), 它通过对损失函数添加L2范数惩罚项的方式使得解更加平滑稳定。 3. **迭代重建算法** - 如Richardson-Lucy (RL) 算法是一种广泛应用于天文学领域内的最大似然估计(Maximum Likelihood Estimation)框架下的非线性迭代方法。 - RL算法假设观测值服从泊松分布,并通过不断更新猜测直到收敛至最优解为止。 4. **深度学习方法** - 近年来随着神经网络的发展,出现了许多端到端训练的CNN架构用于解决盲目的去模糊(blind deblurring)挑战赛。 - Deep Deblur就是一个典型的例子,它能够自动学习不同类型的模糊模式并给出高质量的结果而无需显式的定义物理模型参数。 ```python import numpy as np from scipy import fftpack import matplotlib.pyplot as plt from skimage.io import imread from skimage.color import rgb2gray def inverse_filtering(image, psf): """Apply Inverse Filtering to an image.""" img_fft = fftpack.fftshift(fftpack.fftn(image)) psf_fft = fftpack.fftshift(fftpack.fftn(psf)) restored_img_fft = img_fft / psf_fft # Avoid division by zero and numerical instability. eps = 1e-8 restored_img_fft[np.abs(restored_img_fft)<eps]=0 restored_img = np.real(fftpack.ifftn(fftpack.ifftshift(restored_img_fft))) return restored_img.clip(min=0) # Load the original image "peppers256" original_image = rgb2gray(imread('peppers256.jpg')) # Assume we have loaded a motion blur kernel 'motion_blur_kernel' restored_image = inverse_filtering(original_image, motion_blur_kernel) plt.figure(figsize=(12,6)) plt.subplot(121); plt.imshow(original_image, cmap='gray'); plt.title('Original Image') plt.subplot(122); plt.imshow(restored_image, cmap='gray'); plt.title('Restored Image using Inverse Filtering') plt.show() ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值