Scipy求解最优问题

# coding = utf-8
# 导入必要的库
import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize
# 定义x值的范围为-5到3
x = np.linspace(-5,3,100)
def f(x):
    return 4 * x ** 3 + (x - 2) ** 2 + x ** 4
# 采用fmin_bfgs()函数求f的最小值
x_min_local=optimize.fmin_bfgs(f,5)
print('f(x)极小值点:',x_min_local)
Optimization terminated successfully.
         Current function value: 2.804988
         Iterations: 11
         Function evaluations: 24
         Gradient evaluations: 12
f(x)极小值点: [0.46961744]
x_max_global=optimize.fminbound(f,-10,10)
print('取得极小值时的x值:',x_max_global)
取得极小值时的x值: -2.6729805844842622
plt.plot(x,f(x))
plt.show()

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值