(c++)数据结构与算法之图:Dijkstra、Floyd算法、判断有向图回路

本文介绍了如何使用C++实现数据结构与算法中的Dijkstra算法和Floyd算法,用于求解带权有向图的最短路径。同时,文章还提供了一个基于Floyd算法的函数,用于判断给定有向图中是否存在有向回路。通过实例展示了这两个算法的用法,并给出了具体代码实现。
摘要由CSDN通过智能技术生成
//带权有向图的最短路径算法:Dijkstra、Floyd(结果和输出分开)
//判断在给定有向图中是否存在一个有向回路

#include<set>
#include <iostream>
#define MAXE 100
#define MAXV 15
#define MAXWEIGHT 1000
#define INF 1000
using namespace std;
class graph
{
private:
    int **matrix,*mark;
    int vNum,eNum;
public:
    graph(){};
    graph(int v)
    {
        if(v>=MAXV)    cout<<"construct false"<<endl;
        vNum=v;
        eNum=0;
        mark=new int[vNum];
        for(int i=0;i<vNum;i++)
            mark[i]=0;
        matrix=new int*[vNum];
        int i,j;
        for(i=0;i<vNum;i++)
            matrix[i]=new int[vNum];
        for(i=0;i<vNum;i++)
            for(j=0;j<vNum;j++)
                matrix[i][j]=INF;
    }
    void showEdge()                     //展示邻接矩阵
    {
        cout<<"邻接矩阵如下: "<<endl;
        for(int i=0;i<vNum;i++)
            for(int j=0;j<vNum;j++)
            {
                cout<<matrix[i][j]<<"   ";
                if(j==vNum-1)      cout<<endl;
            }
    }
    void resetMark()                    //重置节点标记数组
    {
        for(int i=0;i<vNum;i++)
            mark[i]=0;
    }
    void setEdge(int start,int end,int weight)
    {
        if(weight>=MAXWEIGHT)       return;
        if(matrix[start][end]==0)
        {
            eNum++;
        }
        matrix[start][end]=weight;
    }
    int * * Dijkstra(int s)                      //Dijkstra:求点s到其余各点的最短路径
    {
        int n=vNum;                           //结点个数
        int *d=new int[n];                    //存放s到各个结点的路径长度(相对最短)(自身到自身为INF)
        int *path=new int[n];        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值