SparkSQL案例

本文探讨了Spark SQL中用户定义函数(UDF)和数据更新及聚合函数(DUAF)的使用,并列举了Spark SQL的一些常见操作命令,帮助读者深入理解Spark SQL在实际工作中的应用。
摘要由CSDN通过智能技术生成

Spark SQL UDF 和 DUAF

import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types.{DataType, IntegerType, StringType, StructField, StructType}
import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.{SparkConf, SparkContext}

/**
 * @Autho: Administrator and wind
 * @Version: 2019/11/21 & 1.0
 *
 */
object SparkSQLUDFUDAF {

  def main(args: Array[String]): Unit = {

    //减少日志打印
    Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)
    
    val conf = new SparkConf().setMaster("local").setAppName("SparkSQLUDFUDAF")

    val sc = new SparkContext(conf)

    val sqlContext = new SQLContext(sc)

    val bigData = Array("Spark","Spark","Spark","spark","spark","spark","spark","spark","Hadoop","Hadoop","Hadoop","Hadoop")

    //创建Dataframe
    val bigDataRDD = sc.parallelize(bigData)

    val bigDataRDDRow = bigDataRDD.map(item => Row(item))

    val structType = StructType(Array(
      new StructField("word",StringType)
    ))

    val bigDataDF = sqlContext.createDataFrame(bigDataRDDRow,structType)

    bigDataDF.createOrReplaceTempView("bigDataTable")

    //UDF  最多22个输入参数
    sqlContext.udf.register("length",(input:String) => input.length())

    //UDAF
    sqlContext.udf.register("wordcount",new MyUDAF)

    sqlContext.sql("select word,wordcount(word) as count from bigDataTable group by word").show()

    sqlContext.sql("select word,length(word) from bigDataTable").show()

    sc.stop()
  }

}

class MyUDAF extends UserDefinedAggregateFunction {

  /**
   * 该方法指定具体输入数据类型
   * @return
   */
  ove
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值