春华秋实

本博客所有内容仅供学习,不允许商用,如有侵权,请联系博主删除,谢谢。...

排序:
默认
按更新时间
按访问量

中文自然语言处理可能是 NLP 中最难的?

现如今,在更多情况下,我们通过传感器和字节来与机器获得交流,而不是依靠交换情感,那如何让超级智能机器能够和人类正常交流沟通呢?在人工智能背景技术下,自然语言处理(NLP)技术被越来越多的人看好,并受到重视。其中,以微软小冰为代表的聊天机器人,如今却成了网红,迅速刷爆了微信和朋友圈,一个17岁纯情少...

2018-06-22 13:22:21

阅读数:10998

评论数:7

主成分分析PCA

简单介绍下PCA的应用 PCA和线性回归的区别: PCA的目的和优势:    

2018-08-15 17:59:24

阅读数:59

评论数:0

视野

在这个信息时代,没有人的视野会受阻,人们最缺乏的并不是视野的广度,而是视野的深度。 事实上,我觉得可以粗略的把人分为两类:追求低成本的快乐的人,追求深层次体验的人。 如果只是想想,当然每个人都会说”我要过丰富的生活,有极致的体验“。但落实到你需要付出多少代价层面,其实大多数人的选择,是在“低成...

2018-08-13 13:57:25

阅读数:88

评论数:0

机器学习的理论知识点总结

最近一边看书,一边梳理机器学习的知识点: 1. 线性回归 2.线性回归的损失函数(误差的平方和) 3. 最小二乘法(手推导) 4.批量梯度下降法(学习率大小问题) 5.放缩scaling对梯度下降的影响 6.多元线性回归 7.逻辑斯蒂回归-二元分类 8.LR代价函数 9.神经网络...

2018-08-03 14:56:15

阅读数:161

评论数:0

using a dict on a Series for aggregation is deprecated and will be removed in a future version

python的pandas中,在统计聚合的时候,版本问题,提示不支持字典格式了。 比如,下面代码这样改就可以了。 words_stat = words_df.groupby(by=['segment'])['segment'].agg({"计数":...

2018-08-01 13:38:20

阅读数:149

评论数:0

Python爬取B站弹幕的思路和流程

做nlp项目,除了各大电商评论和微博数据,弹幕分析对于舆论和该视频的推广都是有帮助的,下面主要说说这么从B站爬取弹幕。 过程很简单,我们来看看: 1. 首先,bilibili的弹幕是在xml文件里,每个视频都有其对应的cid和aid,我们取到cid中的数字放入http://comment.bi...

2018-07-30 17:42:17

阅读数:282

评论数:0

Python中的Nonetype类型怎么判断?

今天写了个爬虫,在抓取数据的时候遇到一个问题,我觉得如果不注意,这个问题很容易被忽略,所以特意在博客记录下: 问题描述: 比如,我在提取信息时,这样判断类型: type(answers[0].find_all("table")[0].string) ...

2018-07-24 15:24:11

阅读数:331

评论数:0

只有战术没有战略,往往成不了大气候。

今天看文章,看到这句话,真心觉得不错!!! 周鸿祎曾说过: 只有战术没有战略,往往成不了大气候。 项羽赢了刘邦无数场,战术上的优势无可比拟,却在战略上一败涂地,最后输了一场便只能霸王别姬、乌江自刎,此为明证,亦是警钟。 作为一个公司的创始人,如果你想成功,想要打造一家百亿美元的独角兽,实现...

2018-07-19 14:51:33

阅读数:297

评论数:3

Markdown中数学公式整理

https://blog.csdn.net/zdk930519/article/details/54137476

2018-07-09 18:34:59

阅读数:336

评论数:0

程序员的自我进化——学习之道,如何更有效的学习

不得不感叹,计算机技术更新迭代的速度太快了,作为程序员每天除了面对工作,就要学习新技术,笔者自己也不例外,近三年来,笔者自己的感觉是一直在为技术疲于奔命,直到现在,也不敢放缓脚步。学习对于程序员来说太重要了,就像每天必须吃饭一样,程序员每天必须抽出一定时间学习新技术,避免被淘汰。 然而,目前的计...

2018-07-06 13:41:53

阅读数:909

评论数:5

金融反欺诈和金融构建信用评分或者金融预测特征抽取案例

之前在微信朋友圈读到过这样一篇文章,施一公:“我国的最大危机,是所有精英都想干金融!”,当然,笔者是非常赞同的,因为和钱距离越近的地方,越能赚到更多的钱,所以从个人或者企业的角度出发,选择金融是正确的方向,就连程序员也不例外。暂且不说这个危机是什么原因造成的,或体制或为了生存。作为程序员既然选择了...

2018-06-30 10:22:13

阅读数:933

评论数:3

Hive SQL优化之 Count Distinct

说实话,也是从今年4月份开始,笔者接触了大量写SQL的工作,才开始慢慢理解SQL的优化。在之前,公司的大数据平台只有十几个节点,随着业务快速发展,每天都会产生上百万条的数据,所以每天使用Hive写SQL发现执行时间都在变慢,但是以结果为目的的工作,在不追求高效的情况下,没人有去深入思考如何改变这种...

2018-06-22 16:16:54

阅读数:505

评论数:1

mysql中日期加减和hive中日期加减区别

先来看看mysql中日期的加减:MySQL 为日期增加一个时间间隔:date_add()now()       //now函数为获取当前时间select date_add(now(), interval 1 day); - 加1天select date_add(now(), interval 1 ...

2018-06-21 15:27:22

阅读数:754

评论数:0

mysql中ifnull和hive中if函数的转换

先说说,在mysql中,ifnull函数的用法,其表达式如下:IFNULL(expr1,expr2)如果 expr1 不是 NULL,IFNULL() 返回 expr1,否则它返回 expr2。IFNULL()返回一个数字或字符串值,取决于它被使用的上下文环境。举个应用场景,比如某一个字段定义为i...

2018-06-21 14:51:34

阅读数:552

评论数:0

mysql使用过程中的几个细节注意点

由于博主目前在数据部门工作,接触最多的关系型数据库就是mysql,因为业务部门的数据一般都是存储在mysql,而最终数据需要在大数据平台上管理,所以中间过程少不了ETL,以及给数据分析BI人员提供数据,这样就会导致写很多的sql,关于sql,博主也是半路出家,野路子,所以难免会犯错误,下面整理几个...

2018-06-20 11:02:41

阅读数:419

评论数:0

R 缺失值处理

假设有一组数据集如下:data=data.frame(y=c(1,2,3,NA,5,6),x1=c(6,NA,4,3,2,1),x2=c(1,3,6,9,12,NA))“NA”即表示缺失值。在R中输入该数据。#判断缺失数据is.na(data)#统计缺失值个数sum(is.na(data))#查看...

2018-06-18 21:43:40

阅读数:383

评论数:0

未来数据领域的珠穆朗玛峰之中文自然语言处理

介绍NLP 作为 AI 技术领域中重要的分支,随着其技术应用范围不断扩大,在数据处理领域占有越来越重要的地位。本达人课,作为中文自然语言处理边学边实战的入门级教程,以小数据量的“简易版”实例,通过实战带大家快速掌握 NLP 在中文方面开发的基本能力。本课程共包含 18 节。各小节之间并没有紧密耦合...

2018-06-14 12:49:03

阅读数:551

评论数:0

程序员的自我进化——补上最短的那块情商木板

程序员的自我进化——补上最短的那块情商木板 也许当微软的工程师们还在思考如何让聊天机器人快速进化的时候,万万没想到,刚刚上线一天,Tay就因在Twitter上言论不当而被强制下线。据说她不但辱骂用户,还发表了种族主义评论和煽动性的政治宣言,事后有网友调侃说是调教姿势有问题!而2014年5月29日,...

2018-06-01 20:51:02

阅读数:4115

评论数:14

mysql如果带有换行的处理方式

UPDATE tablename SET  FIELD = REPLACE(REPLACE(FIELD, CHAR(10), ''), CHAR(13), '');CHAR(10):  换行符CHAR(13):  回车符我的数据只有换行,所以更新:UPDATE tablename  SET  se...

2018-05-24 11:25:49

阅读数:783

评论数:0

SKlearn中的svm超参数总结

SKlearn中好多机器学习模型已经做好了,使用的时候直接调用就可以,俗称“调包侠”,我觉得挺有意思,这样大大降低了机器学习的门槛,最近几天一直在使用svm训练模型,其中数据样本不均衡以及打分一直上不去,特征工程也调了好久,现在开始对svm的一些参数进行调试,看看模型会不会变得更好。SVC参数解释...

2018-05-23 11:54:27

阅读数:423

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭