70. 爬楼梯
题目描述
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
思路
暴力法就是使用递归,设递归函数是m()(为了方便这里省略参数),次数count:
- 判断楼梯的阶数是否为0,为0则count++,return;
- 阶数不为0,阶数-1,然后递归
- 如果阶数>=2,阶数-2,然后递归,(这里之后递归函数结束)。
递归树如下:
时间复杂度:O(n^2)
状态转移方程:
实现 - 动态规划
class Solution {
public int climbStairs(int n) {
int[] dp = new int[n + 1];
if(n == 1 || n == 2) {
return n;
}
dp[1] = 1;
dp[2] = 2;
for(int i=3; i<=n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
}
时间复杂度:O(n)