NLP发展中理性主义和经验主义的矛盾

本文探讨了自然语言处理中的两种主要方法:基于规则的理性主义和基于统计的经验主义。理性主义强调人工制定语言规则,能有效处理长距离依存关系,但易受非本质错误影响且难以自动学习。经验主义通过统计学习大量数据,适应性强,但可能面临数据稀疏问题。两者各有优劣,常结合使用以提高处理效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在自然语言处理发展的过程中,始终充斥着基于规则的理想主义方法和基于统计的经验主义方法之间的矛盾,自然语言处理也在这种矛盾中逐渐成长起来。

基于规则的理性主义方法

理想主义方法主张建立符号处理系统,由人工整理和编写初始的语言知识表示体系(通常为规则),构造相应的推理程序,系统根据规则和程序,将自然语言理解为符号结构——该结构的意义可以从结构中的符号的意义推导出来。

按照这种思路,在自然语言处理系统中,一般首先由词法分析器按照人编写的词法规则对输入句子的单词进行词法分析,然后,词法分析器根据人设计的语法规则对输入的句子进行词法结构分析,最后根据一套变换规则将词法结构映射到语义符号(如逻辑表达式、语义网络、中间语言等)

理想主义方法的优点

  1. 基于规则的理性主义方法中的规则主要是语言学规则,这些规则的形式描述能力和形式生成能力都很强,在自然语言处理中有很好的应用价值。
  2. 基于规则的理性主义方法可以有效地处理句法分析中的长距离依存关系(long-distance dependencies)等困难问题,如句子中长距离的主语和谓语动词之间的一致关系问题(subject-verb agreement)、wh位移(wh-movement)问题。
  3. 基于规则的理性主义方法通常都是明白易懂的,表达得很清晰࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值