elasticsearch ngram, edgengram笔记

内容为转载,原文章请移步elasticsearch ngram, edgengram笔记

本文主要讲解下elasticsearch中的ngram和edgengram的特性,并结合实际例子分析下它们的异同

Analyzer笔记

Analysis 简介

理解elasticsearch的ngram首先需要了解elasticsearch中的analysis。在此我们快速回顾一下基本原理:

当一个文档被索引时,每个field都可能会创建一个倒排索引(如果mapping的时候没有设置不索引该field)。倒排索引的过程就是将文档通过analyzer分成一个一个的term,每一个term都指向包含这个term的文档集合。当查询query时,elasticsearch会根据搜索类型决定是否对query进行analyze,然后和倒排索引中的term进行相关性查询,匹配相应的文档

analyzer = CharFilters(0个或多个) + Tokenizer(恰好一个) + TokenFilters(0个或多个)

index analyzer VS search analyzer

如果mapping中只设置了一个analyzer,那么这个analyzer会同时用于索引文档和搜索query。当然索引文档和对query进行analysis也可以使用不同的analyzer

一个特殊的情况是有的query是需要被analyzed,有的并不需要。例如match query会先用search analyzer进行分析,然后去相应field的倒排索引进行匹配。而term query并不会对query内容进行分析,而是直接和相应field的倒排索引去匹配

Analyze API

Analyze API是一个有效的方式查看分析后的结果:

POST _analyze
{
    "analyzer" : "standard",
    "text" : "hello, world"
}

输出的结果如下所示,即[hello, world]:

Ngram

在机器学习和数据挖掘领域,ngram通常指的是n个词的序列。不过在elasticsearch中,ngram代表的是n个字符的序列。可以把ngram理解成长度为n的滑动窗口,在文档中滑动产生的序列

Ngram Tokenizer
POST _analyze
{
  "tokenizer": "ngram",
  "text": "Quick Fox"
}

ngram分词器默认会产生最小长度为1,最大长度为2的N-grams序列。上述查询语句的输出是
[ Q, Qu, u, ui, i, ic, c, ck, k, "k ", " “, " F”, F, Fo, o, ox, x ]

也可以自定义ngram tokenizer的一些配置:

  • min_gram: 指定产生的最小长度的字符序列,默认为1
  • max_gram: 指定产生的最大长度的字符序列,默认为2
  • token_chars: 指定生成的token应该包含哪些字符.对没有包含进的字符进行分割,默认为[],即保留所有字符
    • letter - eg: a,b,字
    • digit - eg: 3,7
    • whitespace - eg: " ", “\n”
    • punctuation - eg: !, "
    • symbol - eg: $,√
      定义min_gram和max_gram应该按照使用场景来定。使用ngram的一个常见场景就是自动补全。如果单个字符也进行自动补全,那么可能匹配的suggestion太多,导致没有太大意义

另一个需要考虑的便是性能,产生大量的ngram占用空间更大,搜索时花费的事件也更多。

假如现在需要将ngrams生成的token都转换成小写形式,可以使用如下形式

PUT my_index
{
   "settings": {
      "analysis": {
         "tokenizer": {
            "ngram_tokenizer": {
               "type": "nGram",
               "min_gram": 4,
               "max_gram": 4,
               "token_chars": [ "letter", "digit" ]
            }
         },
         "analyzer": {
            "ngram_tokenizer_analyzer": {
               "type": "custom",
               "tokenizer": "ngram_tokenizer",
               "filter": [
                  "lowercase"
               ]
            }
         }
      }
   }
}
POST my_index/_analyze
{
  "analyzer": "ngram_tokenizer_analyzer",
  "text": "Hello, World!"
}

生成的结果序列是[ello, hell, orld, worl]

Ngram Token Filter

上述的例子也可以使用Ngram Token Filter,配上standard的分词器和lower-case的过滤器。
原文本被standard分词器以whitespace和punctuation分割成token,然后通过lowercase过滤器转换成小写形式,最后通过ngram filter生成长度为4的字符序列。

PUT /my_index
{
   "settings": {
      "analysis": {
         "filter": {
            "ngram_filter": {
               "type": "nGram",
               "min_gram": 4,
               "max_gram": 4
            }
         },
         "analyzer": {
            "ngram_filter_analyzer": {
               "type": "custom",
               "tokenizer": "standard",
               "filter": [
                  "lowercase",
                  "ngram_filter"
               ]
            }
         }
      }
   }
}

上述mapping也会和ngram tokenizer产生同样的效果,具体实际应用如何选择应该视场景而定。假如想匹配的term中可以包含特殊字符,那么你应该使用ngram tokenizer。因为standard的tokenizer会过滤掉这些特殊字符。

部分单词匹配

标准的分词器都是以一个单词为最小单元进行匹配,若要对单词进行部分匹配,则可以考虑使用ngram。

对于如下的mapping而言

PUT /test_index
{
   "settings": {
      "number_of_shards": 1,
      "analysis": {
         "filter": {
            "ngram_filter": {
               "type": "ngram",
               "min_gram": 2,
               "max_gram": 20
            }
         },
         "analyzer": {
            "ngram_analyzer": {
               "type": "custom",
               "tokenizer": "standard",
               "filter": [
                  "lowercase",
                  "ngram_filter"
               ]
            }
         }
      }
   },
   "mappings": {
      "doc": {
         "_all": {
            "type": "string",
            "index_analyzer": "ngram_analyzer",
            "search_analyzer": "standard"
         },
         "properties": {
            "word": {
               "type": "string"
               "index_analyzer": "ngram_analyzer",
               "search_analyzer": "standard"
            },
            "definition": {
               "type": "string"
            }
         }
      }
   }
}
PUT /test_index/_bulk
{"index":{"_index":"test_index","_type":"doc","_id":1}}
{"word":"democracy", "definition":"government by the people; a form of government"}

结合上述1.2小节所述的index analyzer以及search analyzer,用户可以判断如下的query能不能匹配到相应的文档

POST /test_index/_search
{
    "query": {
        "match": {
           "_all": "go"
        }
    }
}
POST /test_index/_search
{
    "query": {
        "match": {
           "_all": "Go"
        }
    }
}
POST /test_index/_search
{
    "query": {
        "term": {
           "_all": "go"
        }
    }
}

上述的三条语句可以匹配到,但是下面的语句无法匹配到。

POST /test_index/_search
{
    "query": {
        "term": {
           "_all": "Go"
        }
    }
}

即使文档中没有独立的词go,因为ngram的缘故,但是在倒排索引中也会产生go的token,由于standard的analyzer会自动转换成lowercase格式,所以match Go也能匹配。对于term Go就无法匹配到,因为倒排索引中的token只有go,没有Go

Edge Ngram

Edge Ngram和ngram类似,只不过Edge Ngram产生的序列都是从代索引文档的开头延伸出去的。

POST _analyze
{
  "tokenizer": "edge_ngram",
  "text": "Quick Fox"
}

会产生[ Q, Qu ]

Edge Ngram也有着和ngram相同的配置
  • min_gram: 指定产生的最小长度的字符序列,默认为1
  • max_gram: 指定产生的最大长度的字符序列,默认为2
  • token_chars: 指定生成的token应该包含哪些字符.对没有包含进的字符进行分割,默认为[],即保留所有字符
    • letter - eg: a,b,字
    • digit - eg: 3,7
    • whitespace - eg: " ", “\n”
    • punctuation - eg: !, "
    • symbol - eg: $,√

对于如下的mapping

PUT my_index
{
  "settings": {
    "analysis": {
      "analyzer": {
        "my_analyzer": {
          "tokenizer": "my_tokenizer"
        }
      },
      "tokenizer": {
        "my_tokenizer": {
          "type": "edge_ngram",
          "min_gram": 2,
          "max_gram": 10,
          "token_chars": [
            "letter",
            "digit"
          ]
        }
      }
    }
  }
}
POST my_index/_analyze
{
  "analyzer": "my_analyzer",
  "text": "2 Quick Foxes."
}

产生的token序列为[ Qu, Qui, Quic, Quick, Fo, Fox, Foxe, Foxes ]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值