从应用层面看,如何使用神经网络

本文将神经网络视为一种函数拟合工具,解释卷积层如何进行滤波和特征提取,全连接层的加权求和原理,以及反向传播在调整权重中的作用。此外,还介绍了模型设计可以类比为搭建积木的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

非科班:需对神经网络了解的程度

1. 把神经网络当成一个万能函数拟合器。

2. 把卷积理解为滤波和特征提取。

3. 把全连接层理解为加权求和。

4. 把反向传播理解为从最后一层逐步调整权重参数。

5. 把设计各种模型当成搭积木。

参考链接:https://www.bilibili.com/video/BV1FX4y1C7qk/?spm_id_from=333.1007.tianma.1-3-3.click&vd_source=2758ef806213f133641bb5da6406140b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值