BM算法图解

 首先,先简单说明一下有关BM算法的一些基本概念。

BM算法是一种精确字符串匹配算法(区别于模糊匹配)。

BM算法采用从右向左比较 的方法,同时应用到了两种启发式规则,即坏字符规则好后缀规则 ,来决定向右跳跃的距离。

BM算法的基本流程: 设文本串T,模式串为P。首先将T与P进行左对齐,然后进行从右向左比较 ,如下图所示:


    若是某趟比较不匹配时,BM算法就采用两条启发式规则,即坏字符规则好后缀规则 ,来计算模式串向右移动的距离,直到整个匹配过程的结束。
      

下面,来详细介绍一下坏字符规则好后缀规则

     首先,诠释一下坏字符和好后缀的概念。

   请看下图:


     图中,第一个不匹配的字符(红色部分)为坏字符,已匹配部分(绿色)为好后缀。

    1)坏字符规则(Bad Character):

          在BM算法从右向左扫描的过程中,若发现某个字符x不匹配,则按如下两种情况讨论:

               i. 如果字符x在模式P中没有出现,那么从字符x开始的m个文本显然不可能与P匹配成功,直接全部跳过该区域即可。

               ii. 如果x在模式P中出现,则以该字符进行对齐。

         用数学公式表示,设Skip(x)为P右移的距离,m为模式串P的长度,max(x)为字符x在P中最右位置。


              

       例1:

         下图红色部分,发生了一次不匹配。

             

        计算移动距离Skip(c) = 5 - 3 = 2,则P向右移动2位。

        移动后如下图:

          

        

    2)好后缀规则(Good Suffix):

         若发现某个字符不匹配的同时,已有部分字符匹配成功,则按如下两种情况讨论:

              i. 如果在P中位置t处已匹配部分P'在P中的某位置t'也出现,且位置t'的前一个字符与位置t的前一个字符不相同,则将P右移使t'对应t方才的所在的位置。

              ii. 如果在P中任何位置已匹配部分P'都没有再出现,则找到与P'的后缀P''相同的P的最长前缀x,向右移动P,使x对应方才P''后所在的位置。

         用数学公式表示,设Shift(j)为P右移的距离,m为模式串P的长度,j 为当前所匹配的字符位置,s为t'与t的距离(以上情况i)或者x与P''的距离(以上情况ii)。

           

       以上过程有点抽象,所以我们继续图解。

         例2:

          下图中,已匹配部分cab(绿色)在P中再没出现。

         

         再看下图,其后缀T'(蓝色)与P中前缀P'(红色)匹配,则将P'移动到T'的位置。

         

         移动后如下图:

          

          自此,两个规则讲解完毕。

     在BM算法匹配的过程中,取SKip(x)与Shift(j)中的较大者作为跳跃的距离。

     BM算法预处理时间复杂度为O(m+s),空间复杂度为O(s),s是与P, T相关的有限字符集长度,搜索阶段时间复杂度为O(m·n)。

最好情况下的时间复杂度为O(n/m),最坏情况下时间复杂度为O(m·n)。

### MATLAB GUI 图像去噪系统的设计 #### 程序流程图概述 MATLAB GUI 的图像去噪系统可以通过模块化设计实现多种功能,包括噪声添加、去噪处理、直方图显示以及保存和退出等功能。以下是该系统的程序流程图及其设计步骤。 --- #### 设计步骤 1. **初始化界面** 使用 `GUIDE` 工具创建基本的图形用户界面 (GUI),设置多个控件(如按钮、滑动条、下拉菜单等),用于加载图像、选择噪声类型、应用去噪算法、显示直方图以及其他操作[^2]。 2. **加载图像** 添加一个按钮用于调用文件对话框 (`uigetfile`) 加载图像,并将其显示在指定的轴区域中。代码如下: ```matlab [filename, pathname] = uigetfile({'*.png; *.jpg; *.bmp', 'Image Files'}, 'Select an Image'); if isequal(filename, 0) || isequal(pathname, 0) errordlg('No file selected.'); return; end img = imread(fullfile(pathname, filename)); axes(handles.axesOriginal); imshow(img); title('原始图像'); ``` 3. **添加噪声** 提供选项让用户选择不同的噪声类型(如高斯噪声、椒盐噪声等)。通过回调函数执行相应的噪声添加命令。例如: ```matlab noisyImg = imnoise(double(img), 'salt & pepper', 0.05); % 椒盐噪声 axes(handles.axesNoiseAdded); imshow(uint8(noisyImg)); title('加噪图像'); ``` 4. **去噪方法选择** 实现多种去噪算法(如均值滤波器、中值滤波器、小波变换去噪、BM3D 等)[^1]。允许用户通过下拉菜单或单选按钮选择特定的方法。以下是一个中值滤波的例子: ```matlab denoisedImg = medfilt2(uint8(noisyImg)); % 中值滤波 axes(handles.axesDenoised); imshow(denoisedImg); title('去噪后的图像'); ``` 5. **直方图显示** 用户可以选择查看原始图像、加噪图像或去噪后图像的灰度直方图。利用 `imhist` 函数完成此功能: ```matlab figure; imhist(grayImage); % 绘制灰度直方图 title('灰度直方图'); ``` 6. **保存图像** 提供保存按钮,使用户能够将当前显示的图像保存到本地磁盘。示例代码如下: ```matlab savePath = uiputfile({'*.png'; '*.jpg'; '*.bmp'}, 'Save Denoised Image'); if ~isequal(savePath, 0) imwrite(denoisedImg, fullfile(savePath{1})); end ``` 7. **退出运行** 创建退出按钮,在点击时关闭整个应用程序窗口: ```matlab close(gcf); ``` 8. **姓名显示** 将开发者的姓名或其他信息嵌入到界面上的一个静态文本框中。 9. **功能扩展** 可进一步增加的功能包括但不限于:支持彩色图像处理、自定义参数调整(如滤波器大小)、实时预览效果等[^3]。 --- #### 流程图描述 以下是基于上述步骤构建的程序流程图: ``` 开始 -> 初始化GUI界面 -> |-> 加载图像 -> 显示原图 | |-> 添加噪声 -> 显示带噪图像 | |-> 选择去噪方法 -> 应用算法 -> 显示去噪结果 | |-> 查看直方图 -> 展示统计分布 | |-> 保存图像 -> 输出至文件夹 | |-> 姓名显示 -> 静态文本展示开发者信息 | 结束 <- 关闭程序 ``` --- #### 支持的噪声类型与去噪方法 - **噪声类型** - 高斯白噪声 - 椒盐噪声 - 泊松噪声 - **去噪方法** - 平均滤波器 - 中值滤波器 - Wiener 滤波器 - 小波阈值去噪 - BM3D 方法 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值