是三水不是泗水
码龄8年
关注
提问 私信
  • 博客:324,558
    324,558
    总访问量
  • 421
    原创
  • 1,923,060
    排名
  • 182
    粉丝
  • 1
    铁粉

个人简介:只是个笔记本

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2016-09-23
博客简介:

csg3140100993的博客

查看详细资料
个人成就
  • 获得116次点赞
  • 内容获得31次评论
  • 获得310次收藏
  • 代码片获得142次分享
创作历程
  • 5篇
    2021年
  • 59篇
    2020年
  • 72篇
    2019年
  • 232篇
    2018年
  • 75篇
    2017年
  • 4篇
    2016年
成就勋章
TA的专栏
  • JAVA
    1篇
  • python_ml
    43篇
  • 计算机视觉
    13篇
  • 图神经网络
  • 分布式系统
  • 牛客笔试
    2篇
  • Git
    1篇
  • kaggle
    2篇
  • 后台开发技术栈
  • 卷积神经网络
    1篇
  • C++/PAT/洛谷OJ
    257篇
  • 学习笔记/virtual function
    4篇
  • 学习笔记/类型转换
    1篇
  • Verilog
    1篇
  • ZOJ
    1篇
  • codeup
    1篇
  • DP算法
    4篇
  • 背包
    2篇
  • MST最小生成树
    1篇
  • KMPnext
    1篇
  • 并查集
    1篇
  • 最短路径
    1篇
  • 素数筛
    1篇
  • 正交矩阵
    1篇
  • LCA
    1篇
  • 二叉树层序
    1篇
  • 建树方法
    3篇
  • 模拟
    6篇
  • 字符串处理
    4篇
  • BST
    1篇
  • LeetCode
    56篇
  • 二分法
    1篇
  • STL
    6篇
  • 树状数组
    1篇
  • 单点更新、区间查询
    1篇
  • 网络通信
    2篇
  • UDP和IP
    1篇
  • 贪心
    2篇
  • 折半查找树
    1篇
  • 图的遍历
    1篇
  • 数列组合
    1篇
  • 数学问题
    1篇
  • USTC
    3篇
  • 网络编程
    2篇
  • 机器人
    1篇
兴趣领域 设置
  • 人工智能
    机器学习
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

183人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

YOLOV3网络概览

直接放YoLoV3的网络结构图,让我们稍微看一下YoLov3的网络结构。YoLoV3网络主要分成两大部分: 1.主干网络 DarkNet53 2.多尺度预测 1.主干网络DarkNet53首先是主干网络DarkNet53,结合网络图我们看到它主要是使用了残差块Residual block,这里残差块就是进行一次3X3、步长为2的卷积,然后保存该卷积layer,再进行一次1X1的卷积和一次3X3的卷积,并把这个结果加上layer作为最后的结果.此外,主干网络DarkNet5
转载
发布博客 2021.01.20 ·
1593 阅读 ·
1 点赞 ·
0 评论 ·
10 收藏

上采样/反卷积/上池化的区别

上采样/反卷积/上池化的区别上采样是指将图像上采样到更高分辨率的任何技术。最简单的方法是使用重新采样和插值。即取原始图像输入,将其重新缩放到所需的大小,然后使用插值方法(如双线性插值)计算每个点处的像素值。在CNN上下文中,上池化通常指代最大池化的逆过程。在CNN中,最大池化操作是不可逆的,但是我们可以通过使用一组转换变量记录每个池化区域内最大值的位置来获得一个近似的逆操作结果。在反卷积(网络)中,上池化操作使用这些转换变量从前一层输入中安放这些复原物到(当前层)合适的位置,从而一定程度上保护了原
转载
发布博客 2021.01.20 ·
376 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

windows平台下darknet训练自己的数据集

写完前面关于python接口的文章发现忘了写训练自己的数据集的文章了,这里补上,用的还是AlexeyAB版本的darknet。第一步:首先就是用labelimg做标注,这一步是最费时间的,注意这里一张图片是可以同时标注多个物体的,只是要做好对照关系,我之前网上找了一些教程都只标注了一个物体,这里说明一下标注多个物体也是可以的。第二步:构建训练时可以读取的文件夹目录格式,如下所示:将xml文件放入Annotations文件夹,将图片放入JPEGImages文件夹,利用下面的代码1生成的mytr
原创
发布博客 2021.01.08 ·
638 阅读 ·
0 点赞 ·
1 评论 ·
3 收藏

windows平台darknet检测视频中的目标python接口的处理

首先说一下俺搭建的环境是什么样子的:win10+anaconda+python3.6+VS2015+GTX960+运行CUDA版本10.1+驱动版本CUDA11.1+opencv3.4+C语言版本darknet AlexeyAB简单说明一下,这里用的方法类似于我上一篇文章中提到的第二种方法,将darknet从github上面拉下来之后用VS2015编译生成yolo_cpp_dll.dll这个链接库,可以生成不包含GPU的dll,但是不包含gpu的dll速度就很慢,10s的视频要跑1分多钟,很是心累,而g
原创
发布博客 2021.01.08 ·
676 阅读 ·
3 点赞 ·
3 评论 ·
3 收藏

windows平台下python接口调用darknet训练的模型

windows平台下python接口调用darknet训练的模型进行视频中的目标检测的两种办法(待实践)。一个方法是可以直接用opencv的python接口进行调用,参考文章:1、opencv的python接口修改https://blog.csdn.net/qq_27158179/article/details/81915740?utm_medium=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-
原创
发布博客 2021.01.02 ·
435 阅读 ·
0 点赞 ·
1 评论 ·
3 收藏

win10+GPU(gtx960)+yolo+opencv+Visual studio 2015安装配置

1、首先是查看自己的电脑的GPU,通过查看GPU版本来选择安装CUDA+cudnn我的电脑GPU是GTX960,打开NVIDIA控制面板可以查看得到CUDA需要安装的版本,我的对应版本的CUDA10.1可以查找下载安装教程,下载完成之后离线安装即可。CUDA直接双击之后以此安装即可,cudnn的安装更加简单,解压之后将对应文件复制到CUDA对应的文件夹下面即可,详细操作网上有很多教程。安装完成之后,打开cmd命令窗口,输入ncvv -V检查即可。2、visual studio 2
原创
发布博客 2020.11.05 ·
807 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

剑指offer63_数据流中查找中位数(堆排序实现)

后备知识:make_heap(first ,last)make_heap(first ,last, cmpObject)将[ first, last )范围进行堆排序,cmpobject默认使用less < int>(大顶堆),小顶堆为greater<int>。pop_heap(first ,last)pop_heap(first ,last, cmpObject)将front(即第一个最大元素)移动到end的前部(堆删除),同时将剩下的元素重新构造成(堆
原创
发布博客 2020.09.01 ·
187 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

剑指offer59和60题,打印二叉树

//之字形打印二叉树,栈+队列,根节点设为第0层/*struct TreeNode { int val; struct TreeNode *left; struct TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) { }};*/class Solution {public: vector<vector<int> .
原创
发布博客 2020.08.31 ·
121 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

剑指offer_37变形的二分法

题目描述统计一个数字在升序数组中出现的次数。class Solution {public: int GetNumberOfK(vector<int> data ,int k) { int first=binaryseachfirst(data,0,data.size()-1,k); int last=binaryseachlast(data,0,data.size()-1,k); if(first==-1&&.
原创
发布博客 2020.08.26 ·
162 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

剑指offer35_归并排序求逆序对

题目描述在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P%1000000007输入描述:题目保证输入的数组中没有的相同的数字数据范围:对于%50的数据,size<=10^4对于%75的数据,size<=10^5对于%100的数据,size<=2*10^5示例1输入复制1,2,3,4,5,6,7,0输出.
原创
发布博客 2020.08.26 ·
125 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

剑指offer29_topK问题快排方式解决

题目描述输入n个整数,找出其中最小的K个数。例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4。class Solution {public: vector<int> GetLeastNumbers_Solution(vector<int> input, int k) { vector<int> res; if(input.size()<=0) return res; ...
原创
发布博客 2020.08.25 ·
134 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

剑指offer27_字符串全排列加字母序排列

输入一个字符串,按字典序打印出该字符串中字符的所有排列。例如输入字符串abc,则按字典序打印出由字符a,b,c所能排列出来的所有字符串abc,acb,bac,bca,cab和cba。class Solution {public: set<string> res;//set去重加排序 void swap(vector<char>& a,int x,int y){//交换char数组中的元素位置,参数引用 char temp=a[x];
原创
发布博客 2020.08.25 ·
146 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

替换空格

题目描述请实现一个函数,将一个字符串中的每个空格替换成“%20”。例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20Are%20Happy。class Solution {public: void replaceSpace(char *str,int length) { string st=str;//char*转为string string temp; for(int i=0;i<st.length();i++)
原创
发布博客 2020.08.19 ·
133 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

LGBM和XGB并行对比

1)特征并行lgbm特征并行的前提是每个worker留有一份完整的数据集,但是每个worker仅在特征子集上进行最佳切分点的寻找;worker之间需要相互通信,通过比对损失来确定最佳切分点;然后将这个最佳切分点的位置进行全局广播,每个worker进行切分即可。xgb的特征并行与lgbm的最大不同在于xgb每个worker节点中仅有部分的列数据,也就是垂直切分,每个worker寻找局部最佳切分点,worker之间相互通信,然后在具有最佳切分点的worker上进行节点分裂,再由这个节点广播一下被切分到左右节.
转载
发布博客 2020.08.05 ·
2712 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

回溯题解方法

学好算法全靠套路,认准 labuladong 就够了。读完本文,你不仅学会了算法套路,还可以顺便去 LeetCode 上拿下如下题目:78.子集46.全排列77.组合-----------今天就来聊三道考察频率高,而且容易让人搞混的算法问题,分别是求子集(subset),求排列(permutation),求组合(combination)。这几个问题都可以用回溯算法模板解决,同时子集问题还可以用数学归纳思想解决。读者可以记住这几个问题的回溯套路,就不怕搞不清了。PS:我认真写了
转载
发布博客 2020.07.29 ·
390 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

之字形打印二叉树

/*struct TreeNode { int val; struct TreeNode *left; struct TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) { }};*/class Solution {public: vector<vector<int> > Print(TreeNode* pRoot) {.
原创
发布博客 2020.07.28 ·
331 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

L1、L2正则化的原理和目的

https://blog.csdn.net/LuckyJune34/article/details/54599655
转载
发布博客 2020.07.22 ·
716 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

TCN和GCN

TCN这里有个博客写的很不错:https://www.cnblogs.com/USTC-ZCC/p/11734436.html
原创
发布博客 2020.07.10 ·
1742 阅读 ·
1 点赞 ·
0 评论 ·
13 收藏

cannot import name ‘joblib‘ from ‘sklearn.externals‘

保存模型时from sklearn.externals import joblibjoblib.dump(clf, 'model.pkl',compress=3)报错cannot import name 'joblib' from 'sklearn.externals'这是sklearn的版本的问题,最新版本需要pip install joblib
原创
发布博客 2020.07.07 ·
900 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

TypeError: ‘dict_keys‘ object is not subscriptable

这是因为在python3中keys不允许切片,先转List再切片就好了示例: 将下行的代码:firstStr = inputTree.keys()[0]转为:firstStr = list(inputTree.keys())[0]即可
原创
发布博客 2020.07.07 ·
588 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多