> x1=rnorm(100,mean=80,sd=5)
> x1
[1] 79.35007 83.11081 76.33307 79.00368 80.66916 83.94332 79.51286 79.22252 82.55897 80.53065 82.40369 79.82469 79.33337 78.80269 78.78363 83.73381 69.66598 70.94210 78.82227 80.31673 76.69290
[22] 71.92647 74.13692 74.98949 83.46115 81.35233 87.18409 76.68216 76.22651 82.47930 91.51744 76.80754 85.02993 80.69771 81.38791 74.31143 86.04885 84.88543 71.54022 89.10342 88.18036 84.48084
[43] 87.34199 79.28709 79.08603 85.06840 84.87539 77.31056 81.43674 82.06004 84.97153 84.44341 80.12552 77.42104 82.67528 81.25215 78.22304 72.11099 81.86992 67.06852 74.57337 82.69681 77.91911
[64] 86.91320 84.53494 77.82056 75.96443 85.30792 83.16598 79.16012 82.89330 70.35211 76.27649 81.22488 76.50190 78.21518 76.74423 76.76749 82.33542 75.98212 76.94906 78.82798 86.91889 75.03476
[85] 84.27175 81.49535 72.08693 77.53209 77.15376 88.47940 76.15635 72.45879 83.50642 80.85959 85.25504 85.56596 75.82446 82.82352 78.28314 74.96655
> median(x1)
[1] 79.66878
> quantile(x1)
0% 25% 50% 75% 100%
67.06852 76.73140 79.66878 83.23977 91.51744
> quantile(x1,probs=seq(0,1,0.2))
0% 20% 40% 60% 80% 100%
67.06852 76.26649 78.81444 81.36657 84.30608 91.51744
> fivenum(x1,na.rm=True)
错误于fivenum(x1, na.rm = True) : 找不到对象'True'
> fivenum(x1,na.rm=TRUE)
[1] 67.06852 76.71857 79.66878 83.31356 91.51744
> shapiro.test(x1)
> x1
[1] 79.35007 83.11081 76.33307 79.00368 80.66916 83.94332 79.51286 79.22252 82.55897 80.53065 82.40369 79.82469 79.33337 78.80269 78.78363 83.73381 69.66598 70.94210 78.82227 80.31673 76.69290
[22] 71.92647 74.13692 74.98949 83.46115 81.35233 87.18409 76.68216 76.22651 82.47930 91.51744 76.80754 85.02993 80.69771 81.38791 74.31143 86.04885 84.88543 71.54022 89.10342 88.18036 84.48084
[43] 87.34199 79.28709 79.08603 85.06840 84.87539 77.31056 81.43674 82.06004 84.97153 84.44341 80.12552 77.42104 82.67528 81.25215 78.22304 72.11099 81.86992 67.06852 74.57337 82.69681 77.91911
[64] 86.91320 84.53494 77.82056 75.96443 85.30792 83.16598 79.16012 82.89330 70.35211 76.27649 81.22488 76.50190 78.21518 76.74423 76.76749 82.33542 75.98212 76.94906 78.82798 86.91889 75.03476
[85] 84.27175 81.49535 72.08693 77.53209 77.15376 88.47940 76.15635 72.45879 83.50642 80.85959 85.25504 85.56596 75.82446 82.82352 78.28314 74.96655
> median(x1)
[1] 79.66878
> quantile(x1)
0% 25% 50% 75% 100%
67.06852 76.73140 79.66878 83.23977 91.51744
> quantile(x1,probs=seq(0,1,0.2))
0% 20% 40% 60% 80% 100%
67.06852 76.26649 78.81444 81.36657 84.30608 91.51744
> fivenum(x1,na.rm=True)
错误于fivenum(x1, na.rm = True) : 找不到对象'True'
> fivenum(x1,na.rm=TRUE)
[1] 67.06852 76.71857 79.66878 83.31356 91.51744
> shapiro.test(x1)
Shapiro-Wilk normality test
data: x1
W = 0.9937, p-value = 0.9258
W = 0.9937, p-value = 0.9258
> p值大于0.05
错误: 找不到对象'p值大于0.05'
> 正态分布检测
错误: 找不到对象'正态分布检测'
>
> 概率描述
错误: 找不到对象'概率描述'
> 多元数据的数据特征==========================
> 下
错误: 找不到对象'下'
> x
[1] 1 2 6
> x1
[1] 79.35007 83.11081 76.33307 79.00368 80.66916 83.94332 79.51286 79.22252 82.55897 80.53065 82.40369 79.82469 79.33337 78.80269 78.78363
[16] 83.73381 69.66598 70.94210 78.82227 80.31673 76.69290 71.92647 74.13692 74.98949 83.46115 81.35233 87.18409 76.68216 76.22651 82.47930
[31] 91.51744 76.80754 85.02993 80.69771 81.38791 74.31143 86.04885 84.88543 71.54022 89.10342 88.18036 84.48084 87.34199 79.28709 79.08603
[46] 85.06840 84.87539 77.31056 81.43674 82.06004 84.97153 84.44341 80.12552 77.42104 82.67528 81.25215 78.22304 72.11099 81.86992 67.06852
[61] 74.57337 82.69681 77.91911 86.91320 84.53494 77.82056 75.96443 85.30792 83.16598 79.16012 82.89330 70.35211 76.27649 81.22488 76.50190
[76] 78.21518 76.74423 76.76749 82.33542 75.98212 76.94906 78.82798 86.91889 75.03476 84.27175 81.49535 72.08693 77.53209 77.15376 88.47940
[91] 76.15635 72.45879 83.50642 80.85959 85.25504 85.56596 75.82446 82.82352 78.28314 74.96655
> 方差、协方差矩阵、关联系数
> x2=round(rnorm(100,mean=80,sd=5))
> x3=round(rnorm(100,mean=70,sd=6))
> x1=round(runif(100,min=60,max=100))
> x=data.frame(x1,x2,x3)
> x
x1 x2 x3
1 75 76 71
2 100 76 65
3 64 80 72
4 96 86 66
5 82 70 82
6 74 77 63
7 85 80 76
8 97 81 73
9 64 79 66
10 74 69 66
11 100 86 75
12 67 83 64
13 76 86 74
14 95 81 58
15 71 80 72
16 64 86 74
17 68 71 68
18 79 78 71
19 85 87 81
20 99 70 73
21 85 73 63
22 95 78 74
23 84 74 81
24 70 83 75
25 76 79 71
26 93 82 66
27 63 83 79
28 94 88 72
29 92 73 75
30 87 79 71
31 87 77 68
32 75 80 63
33 96 78 71
34 72 88 64
35 74 80 70
36 88 84 77
37 99 88 71
38 62 70 73
39 94 77 58
40 68 78 83
41 61 89 61
42 85 72 54
43 93 83 79
44 72 80 78
45 86 84 82
46 85 76 70
47 69 79 62
48 70 75 80
49 80 80 69
50 89 85 70
51 98 80 74
52 75 77 70
53 79 82 65
54 79 80 64
55 78 75 57
56 66 81 71
57 80 71 70
58 100 79 64
59 76 86 67
60 60 76 62
61 76 83 79
62 94 79 66
63 71 78 68
64 79 88 71
65 65 81 63
66 60 81 76
67 71 78 74
68 83 86 70
69 97 81 61
70 65 72 73
71 62 77 84
72 69 80 63
73 71 74 64
74 93 77 70
75 82 80 74
76 62 88 63
77 72 81 69
78 83 74 68
79 62 85 71
80 98 81 65
81 86 77 65
82 99 76 74
83 67 76 77
84 84 79 77
85 78 76 68
86 94 79 71
87 64 81 75
88 75 73 72
89 76 79 73
90 94 86 72
91 98 76 72
92 97 79 63
93 98 85 72
94 89 75 67
95 78 82 65
96 61 73 73
97 73 80 61
98 94 82 72
99 94 82 68
100 75 71 66
> 协方差函数cov,相关系数函数cor()
> cov(x$x1,x$x2)
[1] 3.761111
> cor(x$x1,x$x2)
[1] 0.06486126
> cor(x$x3,x$x2)
[1] 0.04182909
> cor(x[1:3])
x1 x2 x3
x1 1.00000000 0.06486126 -0.05695914
x2 0.06486126 1.00000000 0.04182909
x3 -0.05695914 0.04182909 1.00000000
> cov(x[1:3])
x1 x2 x3
x1 148.826162 3.761111 -4.248586
x2 3.761111 22.593434 1.215657
x3 -4.248586 1.215657 37.383737
>
>
>
> cor.test(x1,x2)
错误: 找不到对象'p值大于0.05'
> 正态分布检测
错误: 找不到对象'正态分布检测'
>
> 概率描述
错误: 找不到对象'概率描述'
> 多元数据的数据特征==========================
> 下
错误: 找不到对象'下'
> x
[1] 1 2 6
> x1
[1] 79.35007 83.11081 76.33307 79.00368 80.66916 83.94332 79.51286 79.22252 82.55897 80.53065 82.40369 79.82469 79.33337 78.80269 78.78363
[16] 83.73381 69.66598 70.94210 78.82227 80.31673 76.69290 71.92647 74.13692 74.98949 83.46115 81.35233 87.18409 76.68216 76.22651 82.47930
[31] 91.51744 76.80754 85.02993 80.69771 81.38791 74.31143 86.04885 84.88543 71.54022 89.10342 88.18036 84.48084 87.34199 79.28709 79.08603
[46] 85.06840 84.87539 77.31056 81.43674 82.06004 84.97153 84.44341 80.12552 77.42104 82.67528 81.25215 78.22304 72.11099 81.86992 67.06852
[61] 74.57337 82.69681 77.91911 86.91320 84.53494 77.82056 75.96443 85.30792 83.16598 79.16012 82.89330 70.35211 76.27649 81.22488 76.50190
[76] 78.21518 76.74423 76.76749 82.33542 75.98212 76.94906 78.82798 86.91889 75.03476 84.27175 81.49535 72.08693 77.53209 77.15376 88.47940
[91] 76.15635 72.45879 83.50642 80.85959 85.25504 85.56596 75.82446 82.82352 78.28314 74.96655
> 方差、协方差矩阵、关联系数
> x2=round(rnorm(100,mean=80,sd=5))
> x3=round(rnorm(100,mean=70,sd=6))
> x1=round(runif(100,min=60,max=100))
> x=data.frame(x1,x2,x3)
> x
x1 x2 x3
1 75 76 71
2 100 76 65
3 64 80 72
4 96 86 66
5 82 70 82
6 74 77 63
7 85 80 76
8 97 81 73
9 64 79 66
10 74 69 66
11 100 86 75
12 67 83 64
13 76 86 74
14 95 81 58
15 71 80 72
16 64 86 74
17 68 71 68
18 79 78 71
19 85 87 81
20 99 70 73
21 85 73 63
22 95 78 74
23 84 74 81
24 70 83 75
25 76 79 71
26 93 82 66
27 63 83 79
28 94 88 72
29 92 73 75
30 87 79 71
31 87 77 68
32 75 80 63
33 96 78 71
34 72 88 64
35 74 80 70
36 88 84 77
37 99 88 71
38 62 70 73
39 94 77 58
40 68 78 83
41 61 89 61
42 85 72 54
43 93 83 79
44 72 80 78
45 86 84 82
46 85 76 70
47 69 79 62
48 70 75 80
49 80 80 69
50 89 85 70
51 98 80 74
52 75 77 70
53 79 82 65
54 79 80 64
55 78 75 57
56 66 81 71
57 80 71 70
58 100 79 64
59 76 86 67
60 60 76 62
61 76 83 79
62 94 79 66
63 71 78 68
64 79 88 71
65 65 81 63
66 60 81 76
67 71 78 74
68 83 86 70
69 97 81 61
70 65 72 73
71 62 77 84
72 69 80 63
73 71 74 64
74 93 77 70
75 82 80 74
76 62 88 63
77 72 81 69
78 83 74 68
79 62 85 71
80 98 81 65
81 86 77 65
82 99 76 74
83 67 76 77
84 84 79 77
85 78 76 68
86 94 79 71
87 64 81 75
88 75 73 72
89 76 79 73
90 94 86 72
91 98 76 72
92 97 79 63
93 98 85 72
94 89 75 67
95 78 82 65
96 61 73 73
97 73 80 61
98 94 82 72
99 94 82 68
100 75 71 66
> 协方差函数cov,相关系数函数cor()
> cov(x$x1,x$x2)
[1] 3.761111
> cor(x$x1,x$x2)
[1] 0.06486126
> cor(x$x3,x$x2)
[1] 0.04182909
> cor(x[1:3])
x1 x2 x3
x1 1.00000000 0.06486126 -0.05695914
x2 0.06486126 1.00000000 0.04182909
x3 -0.05695914 0.04182909 1.00000000
> cov(x[1:3])
x1 x2 x3
x1 148.826162 3.761111 -4.248586
x2 3.761111 22.593434 1.215657
x3 -4.248586 1.215657 37.383737
>
>
>
> cor.test(x1,x2)
Pearson's product-moment correlation
data: x1 and x2
t = 0.6434, df = 98, p-value = 0.5214
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.1332545 0.2579926
sample estimates:
cor
0.06486126
t = 0.6434, df = 98, p-value = 0.5214
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.1332545 0.2579926
sample estimates:
cor
0.06486126
> plot(iris[1,2])
> plot(iris[which(iris$Species="setosa"),1:2])
错误: 意外的'='在"plot(iris[which(iris$Species="里
> plot(iris[which(iris$Species=="setosa"),1:2])
> plot(iris[1:22])
错误于`[.data.frame`(iris, 1:22) : undefined columns selected
> plot(iris[1:2])
> cor(iris[1],iris[2])
Sepal.Width
Sepal.Length -0.1175698
> cor(iris[2],iris[3])
Petal.Length
Sepal.Width -0.4284401
> 相关分析分析相关系数是否大于0.05
错误: 找不到对象'相关分析分析相关系数是否大于0.05'
> cor.test(iris$Sepal.Length,iris$Sepal.Width)
> plot(iris[which(iris$Species="setosa"),1:2])
错误: 意外的'='在"plot(iris[which(iris$Species="里
> plot(iris[which(iris$Species=="setosa"),1:2])
> plot(iris[1:22])
错误于`[.data.frame`(iris, 1:22) : undefined columns selected
> plot(iris[1:2])
> cor(iris[1],iris[2])
Sepal.Width
Sepal.Length -0.1175698
> cor(iris[2],iris[3])
Petal.Length
Sepal.Width -0.4284401
> 相关分析分析相关系数是否大于0.05
错误: 找不到对象'相关分析分析相关系数是否大于0.05'
> cor.test(iris$Sepal.Length,iris$Sepal.Width)
Pearson's product-moment correlation
data: iris$Sepal.Length and iris$Sepal.Width
t = -1.4403, df = 148, p-value = 0.1519
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.27269325 0.04351158
sample estimates:
cor
-0.1175698
t = -1.4403, df = 148, p-value = 0.1519
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.27269325 0.04351158
sample estimates:
cor
-0.1175698
> cor.test(iris[which(iris$Species="setosa"),iris$Sepal.Length,iris$Sepal.Width])
错误: 意外的'='在"cor.test(iris[which(iris$Species="里
> cor.test(iris[which(iris$Species="setosa"),iris$Sepal.Length:iris$Sepal.Width])
错误: 意外的'='在"cor.test(iris[which(iris$Species="里
> cor.test(iris[which(iris$Species=="setosa"),iris$Sepal.Length:iris$Sepal.Width])
错误于cor.test.default(iris[which(iris$Species == "setosa"), iris$Sepal.Length:iris$Sepal.Width]) :
缺少参数"y",也没有缺省值
此外: 警告信息:
1: In iris$Sepal.Length:iris$Sepal.Width :
数值表达式一共有150元素: 只用了第一个
2: In iris$Sepal.Length:iris$Sepal.Width :
数值表达式一共有150元素: 只用了第一个
> cor.test(iris[which(iris$Species=="setosa"),iris$Sepal.Length,iris$Sepal.Width])
错误于`[.data.frame`(iris, which(iris$Species == "setosa"), iris$Sepal.Length, :
undefined columns selected
> cor.test(iris[which(iris$Species=="setosa"),iris$Sepal.Length],(iris[which(iris$Species=="setosa"),iris$Sepal.Length]
+
+ 1
错误: 意外的数值量 于
"
1"
> cor.test(iris[which(iris$Species=="setosa"),iris$Sepal.Length],iris[which(iris$Species=="setosa"),iris$Sepal.Width])
错误于`[.data.frame`(iris, which(iris$Species == "setosa"), iris$Sepal.Length) :
undefined columns selected
>
>
>
> a=lm(x1~x2)
> a
错误: 意外的'='在"cor.test(iris[which(iris$Species="里
> cor.test(iris[which(iris$Species="setosa"),iris$Sepal.Length:iris$Sepal.Width])
错误: 意外的'='在"cor.test(iris[which(iris$Species="里
> cor.test(iris[which(iris$Species=="setosa"),iris$Sepal.Length:iris$Sepal.Width])
错误于cor.test.default(iris[which(iris$Species == "setosa"), iris$Sepal.Length:iris$Sepal.Width]) :
缺少参数"y",也没有缺省值
此外: 警告信息:
1: In iris$Sepal.Length:iris$Sepal.Width :
数值表达式一共有150元素: 只用了第一个
2: In iris$Sepal.Length:iris$Sepal.Width :
数值表达式一共有150元素: 只用了第一个
> cor.test(iris[which(iris$Species=="setosa"),iris$Sepal.Length,iris$Sepal.Width])
错误于`[.data.frame`(iris, which(iris$Species == "setosa"), iris$Sepal.Length, :
undefined columns selected
> cor.test(iris[which(iris$Species=="setosa"),iris$Sepal.Length],(iris[which(iris$Species=="setosa"),iris$Sepal.Length]
+
+ 1
错误: 意外的数值量 于
"
1"
> cor.test(iris[which(iris$Species=="setosa"),iris$Sepal.Length],iris[which(iris$Species=="setosa"),iris$Sepal.Width])
错误于`[.data.frame`(iris, which(iris$Species == "setosa"), iris$Sepal.Length) :
undefined columns selected
>
>
>
> a=lm(x1~x2)
> a
Call:
lm(formula = x1 ~ x2)
lm(formula = x1 ~ x2)
Coefficients:
(Intercept) x2
67.1807 0.1665
(Intercept) x2
67.1807 0.1665
> plot(x1,x2)
> summary(a)
> summary(a)
Call:
lm(formula = x1 ~ x2)
lm(formula = x1 ~ x2)
Residuals:
Min 1Q Median 3Q Max
-20.996 -9.540 -1.582 12.253 20.168
Min 1Q Median 3Q Max
-20.996 -9.540 -1.582 12.253 20.168
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 67.1807 20.5654 3.267 0.0015 **
x2 0.1665 0.2587 0.643 0.5214
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Estimate Std. Error t value Pr(>|t|)
(Intercept) 67.1807 20.5654 3.267 0.0015 **
x2 0.1665 0.2587 0.643 0.5214
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 12.24 on 98 degrees of freedom
Multiple R-squared: 0.004207, Adjusted R-squared: -0.005954
F-statistic: 0.414 on 1 and 98 DF, p-value: 0.5214
Multiple R-squared: 0.004207, Adjusted R-squared: -0.005954
F-statistic: 0.414 on 1 and 98 DF, p-value: 0.5214
> 方差分析anova(a)
错误: 没有"方差分析anova"这个函数
> anova(a)
Analysis of Variance Table
错误: 没有"方差分析anova"这个函数
> anova(a)
Analysis of Variance Table
Response: x1
Df Sum Sq Mean Sq F value Pr(>F)
x2 1 62 61.985 0.414 0.5214
Residuals 98 14672 149.712
> z=data.frame(x=10)
> z
x
1 10
> predict(a,z)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
79.83233 79.83233 80.49820 81.49702 78.83351 79.99880 80.49820 80.66467 80.33174 78.66704 81.49702 80.99761 81.49702 80.66467 80.49820 81.49702
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
78.99998 80.16527 81.66349 78.83351 79.33292 80.16527 79.49939 80.99761 80.33174 80.83114 80.99761 81.82996 79.33292 80.33174 79.99880 80.49820
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
80.16527 81.82996 80.49820 81.16408 81.82996 78.83351 79.99880 80.16527 81.99643 79.16645 80.99761 80.49820 81.16408 79.83233 80.33174 79.66586
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
80.49820 81.33055 80.49820 79.99880 80.83114 80.49820 79.66586 80.66467 78.99998 80.33174 81.49702 79.83233 80.99761 80.33174 80.16527 81.82996
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
80.66467 80.66467 80.16527 81.49702 80.66467 79.16645 79.99880 80.49820 79.49939 79.99880 80.49820 81.82996 80.66467 79.49939 81.33055 80.66467
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
79.99880 79.83233 79.83233 80.33174 79.83233 80.33174 80.66467 79.33292 80.33174 81.49702 79.83233 80.33174 81.33055 79.66586 80.83114 79.33292
97 98 99 100
80.49820 80.83114 80.83114 78.99998
警告信息:
'newdata'有1行但变量里有100行
> a=lm(x2,x3)
错误于formula.default(object, env = baseenv()) : 公式不对
> a=lm(x2~x3)
> a
Df Sum Sq Mean Sq F value Pr(>F)
x2 1 62 61.985 0.414 0.5214
Residuals 98 14672 149.712
> z=data.frame(x=10)
> z
x
1 10
> predict(a,z)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
79.83233 79.83233 80.49820 81.49702 78.83351 79.99880 80.49820 80.66467 80.33174 78.66704 81.49702 80.99761 81.49702 80.66467 80.49820 81.49702
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
78.99998 80.16527 81.66349 78.83351 79.33292 80.16527 79.49939 80.99761 80.33174 80.83114 80.99761 81.82996 79.33292 80.33174 79.99880 80.49820
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
80.16527 81.82996 80.49820 81.16408 81.82996 78.83351 79.99880 80.16527 81.99643 79.16645 80.99761 80.49820 81.16408 79.83233 80.33174 79.66586
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
80.49820 81.33055 80.49820 79.99880 80.83114 80.49820 79.66586 80.66467 78.99998 80.33174 81.49702 79.83233 80.99761 80.33174 80.16527 81.82996
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
80.66467 80.66467 80.16527 81.49702 80.66467 79.16645 79.99880 80.49820 79.49939 79.99880 80.49820 81.82996 80.66467 79.49939 81.33055 80.66467
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
79.99880 79.83233 79.83233 80.33174 79.83233 80.33174 80.66467 79.33292 80.33174 81.49702 79.83233 80.33174 81.33055 79.66586 80.83114 79.33292
97 98 99 100
80.49820 80.83114 80.83114 78.99998
警告信息:
'newdata'有1行但变量里有100行
> a=lm(x2,x3)
错误于formula.default(object, env = baseenv()) : 公式不对
> a=lm(x2~x3)
> a
Call:
lm(formula = x2 ~ x3)
lm(formula = x2 ~ x3)
Coefficients:
(Intercept) x3
77.07404 0.03252
(Intercept) x3
77.07404 0.03252
> summary(a)
Call:
lm(formula = x2 ~ x3)
lm(formula = x2 ~ x3)
Residuals:
Min 1Q Median 3Q Max
-10.2203 -3.2121 0.1497 2.8123 9.9423
Min 1Q Median 3Q Max
-10.2203 -3.2121 0.1497 2.8123 9.9423
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 77.07404 5.51222 13.982 <2e-16 ***
x3 0.03252 0.07846 0.414 0.679
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Estimate Std. Error t value Pr(>|t|)
(Intercept) 77.07404 5.51222 13.982 <2e-16 ***
x3 0.03252 0.07846 0.414 0.679
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 4.773 on 98 degrees of freedom
Multiple R-squared: 0.00175, Adjusted R-squared: -0.008437
F-statistic: 0.1718 on 1 and 98 DF, p-value: 0.6795
Multiple R-squared: 0.00175, Adjusted R-squared: -0.008437
F-statistic: 0.1718 on 1 and 98 DF, p-value: 0.6795
> predict(a,z)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
79.38284 79.18773 79.41536 79.22025 79.74055 79.12270 79.54544 79.44788 79.22025 79.22025 79.51292 79.15522 79.48040 78.96011 79.41536 79.48040 79.28529 79.38284 79.70803 79.44788 79.12270
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
79.48040 79.70803 79.51292 79.38284 79.22025 79.64299 79.41536 79.51292 79.38284 79.28529 79.12270 79.38284 79.15522 79.35033 79.57795 79.38284 79.44788 78.96011 79.77306 79.05766 78.83003
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
79.64299 79.61047 79.74055 79.35033 79.09018 79.67551 79.31781 79.35033 79.48040 79.35033 79.18773 79.15522 78.92759 79.38284 79.35033 79.15522 79.25277 79.09018 79.64299 79.22025 79.28529
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
79.38284 79.12270 79.54544 79.48040 79.35033 79.05766 79.44788 79.80558 79.12270 79.15522 79.35033 79.48040 79.12270 79.31781 79.28529 79.38284 79.18773 79.18773 79.48040 79.57795 79.57795
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
79.28529 79.38284 79.51292 79.41536 79.44788 79.41536 79.41536 79.12270 79.41536 79.25277 79.18773 79.44788 79.05766 79.41536 79.28529 79.22025
警告信息:
'newdata'有1行但变量里有100行
>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
79.38284 79.18773 79.41536 79.22025 79.74055 79.12270 79.54544 79.44788 79.22025 79.22025 79.51292 79.15522 79.48040 78.96011 79.41536 79.48040 79.28529 79.38284 79.70803 79.44788 79.12270
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
79.48040 79.70803 79.51292 79.38284 79.22025 79.64299 79.41536 79.51292 79.38284 79.28529 79.12270 79.38284 79.15522 79.35033 79.57795 79.38284 79.44788 78.96011 79.77306 79.05766 78.83003
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
79.64299 79.61047 79.74055 79.35033 79.09018 79.67551 79.31781 79.35033 79.48040 79.35033 79.18773 79.15522 78.92759 79.38284 79.35033 79.15522 79.25277 79.09018 79.64299 79.22025 79.28529
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
79.38284 79.12270 79.54544 79.48040 79.35033 79.05766 79.44788 79.80558 79.12270 79.15522 79.35033 79.48040 79.12270 79.31781 79.28529 79.38284 79.18773 79.18773 79.48040 79.57795 79.57795
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
79.28529 79.38284 79.51292 79.41536 79.44788 79.41536 79.41536 79.12270 79.41536 79.25277 79.18773 79.44788 79.05766 79.41536 79.28529 79.22025
警告信息:
'newdata'有1行但变量里有100行
>
来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/27573546/viewspace-747244/,如需转载,请注明出处,否则将追究法律责任。
转载于:http://blog.itpub.net/27573546/viewspace-747244/