第2周项目3 体验复杂度(1)两种排序算法的运行时间

<span style="color:#006600;">Copyright (c) 2015,烟台大学计控学院</span>
<span style="color:#006600;">All rights reserved</span>
<span style="color:#006600;">文件名称:第2周项目3 体验复杂度.cpp、</span>
<span style="color:#006600;">作者:陈胜男</span>
<span style="color:#006600;">完成日期:2015.9.14</span>
<span style="color:#006600;">问题描述:感受复杂度为O(n^2)的选择排序程序和复杂度为O(nlogn)的快速排序程序运行时间的差异</span>
<span style="color:#006600;">输入描述:两种运行程序</span>
<span style="color:#006600;">程序输出:运行所需时间</span>
<strong><span style="color:#cc0000;"></span></strong> 
<strong><span style="color:#cc0000;">复杂度为O(n^2)的选择排序程序</span></strong>
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#define MAXNUM 100000
void selectsort(int a[], int n)
{
        int i, j, k, tmp;
        for(i = 0; i < n-1; i++)
        {
                k = i;
                for(j = i+1; j < n; j++)
                {
                        if(a[j] < a[k])
                                k = j;
                }
                if(k != j)
                {
                        tmp = a[i];
                        a[i] = a[k];
                        a[k] = tmp;
                }
        }
}

int main()
{
    int x[MAXNUM];
    int n = 0;
    double t1,t2;
    FILE *fp;
    fp = fopen("numbers.txt", "r");
    while(fscanf(fp, "%d", &x[n])!=EOF)
        n++;
    printf("数据量:%d, 开始排序....", n);
    t1=time(0);
    selectsort(x, n);
    t2=time(0);
    printf("用时 %d 秒!", (int)(t2-t1));
    fclose(fp);
    return 0;
}
<strong><span style="color:#cc0000;">运行结果如下</span></strong>
<img src="https://img-blog.csdn.net/20150914164814152?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" />
<strong><span style="color:#cc0000;">复杂度为O(nlogn)的快速排序程序</span></strong>
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#define MAXNUM 100000
void quicksort(int data[],int first,int last)
{
    int i, j, t, base;
    if (first>last)
        return;
    base=data[first];
    i=first;
    j=last;
    while(i!=j)
    {
        while(data[j]>=base && i<j)
            j--;
        while(data[i]<=base && i<j)
            i++;
        /*交换两个数*/
        if(i<j)
        {
            t=data[i];
            data[i]=data[j];
            data[j]=t;
        }
    }
    data[first]=data[i];
    data[i]=base;
    quicksort(data,first,i-1);
    quicksort(data,i+1,last);
}

int main()
{
    int x[MAXNUM];
    int n = 0;
    double t1,t2;
    FILE *fp;
    fp = fopen("numbers.txt", "r");
    while(fscanf(fp, "%d", &x[n])!=EOF)
    n++;
    printf("数据量:%d, 开始排序....", n);
    t1=time(0);
    quicksort(x, 0, n-1);
    t2=time(0);
    printf("用时 %d 秒!", (int)(t2-t1));
    fclose(fp);
    return 0;
}
<strong><span style="color:#cc0000;">运行结果如下</span></strong>
<img src="https://img-blog.csdn.net/20150914170018199?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" />
<span style="color:#cc0000;"><strong>总结:</strong></span><span style="color:#000000;">由程序运行结果可知复杂度为</span><span style="color:#000000;">O(nlogn)的快速排序程序运行时间小于复杂度为O(n^2)的选择排序运行时间,大数据时选择复杂度为O(n^2)的选择排序适合,数据小时用复杂度为O(nlogn)的快速排序可以节省时间。</span>
<strong><span style="color:#ffff66;"><span style="color:#cc0000;">学习心得:</span>:</span></strong>1.文件需下载且与运行程序放在同一个文件夹。
           2.感受了两种程序在能运行时间上的差异。
           3.编程选择合适的算法。
 
 
 

                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值