Discriminant Analysis on Riemannian Manifold of Gaussian Distributions for Face Recognition With Ima

该文提出了一种在图像集人脸识别中利用高斯分布黎曼流形的判别分析方法,通过高斯混合模型表示图像集,并在流形上进行区分学习。文章探讨了两种框架,一种是将流形嵌入高维空间进行鉴别分析,另一种是通过图嵌入方法保持几何结构并最大化分离度。这种方法在多个大型人脸识别数据库上表现优越。
摘要由CSDN通过智能技术生成

读论文
更新中

图像集人脸识别中高斯分布黎曼流形的判别分析

摘要
为了解决使用图像集进行人脸识别的问题
我们的目标是获取每个图像集中潜在的数据分布,从而促进更鲁棒的分类
为此,我们将图像集表示为由多个具有先验概率的高斯分量组成的高斯混合模型(GMM),并试图从不同类别中区分高斯分量。
由于从信息几何的角度来看,高斯分布在一个特定的黎曼流形上,因此本文提出了一种高斯分布黎曼流形的判别分析方法。我们研究了高斯之间的几个距离度量,并相应地提出了两个区分学习框架来满足特定流形的几何和统计特征。
第一个框架导出一系列可证明的正定概率核,以将流形嵌入到高维希尔伯特空间中,在该空间中可以应用在欧几里德空间中开发的传统鉴别分析方法,并且设计了加权核鉴别分析,其学习高斯成分在高斯混合模型中的鉴别表示,其先验概率作为样本权重。
另外,另一种框架将经典的图嵌入方法扩展到流形,利用高斯点之间的距离度量来构造邻接图,从而将原始流形嵌入到低维的、有区别的目标流形中,同时保留几何结构分离度最大化。该方法通过在四个最具挑战性和最大的数据库上的人脸识别和验证任务进行评估,以证明其优于现有技术。
(即方法一为流形嵌入高维空间,再用欧几里得空间的方法
方法二为在流行空间中定义指标)

正文
随着多媒体技术的飞速发展,基于图像集的人脸识别问题越来越受到重视。这个问题自然会出现,以满足广泛的现实世界的应用ÿ

LinearDiscriminantAnalysis(线性判别分析)是一种经典的分类算法,用于将具有多个特征的数据点分配到两个或多个预定义的类别中。在 Scikit-learn 库中,LinearDiscriminantAnalysis 类可以用于实现这种分类算法。下面是 LinearDiscriminantAnalysis 类的用法介绍: 1. 引入 LinearDiscriminantAnalysis 类 ```python from sklearn.discriminant_analysis import LinearDiscriminantAnalysis ``` 2. 创建 LinearDiscriminantAnalysis 实例 ```python flda = LinearDiscriminantAnalysis(n_components=2) ``` 这将创建一个 LinearDiscriminantAnalysis 的实例,其中 n_components 参数指定要提取的特征数量(默认为 None,表示保留所有特征)。 3. 使用 fit 方法拟合模型 ```python flda.fit(X, y) ``` 这将使用 X 和 y 训练数据来拟合 LinearDiscriminantAnalysis 模型,其中 X 是训练数据的特征向量,y 是训练数据的标签。 4. 使用 transform 方法转换数据 ```python X_flda = flda.transform(X) ``` 这将使用 LinearDiscriminantAnalysis 模型将原始特征向量 X 转换为 FDLA 特征向量 X_flda。 5. 使用 predict 方法进行预测 ```python y_pred = flda.predict(X_test) ``` 这将使用 LinearDiscriminantAnalysis 模型对测试数据 X_test 进行预测,并返回预测的标签 y_pred。 6. 使用 score 方法计算模型得分 ```python score = flda.score(X_test, y_test) ``` 这将使用 LinearDiscriminantAnalysis 模型对测试数据 X_test 进行预测,并与实际标签 y_test 进行比较,返回模型的准确率得分。 总之,LinearDiscriminantAnalysis 类提供了一种简单而有效的方法来进行分类和特征提取。它可以轻松地与其他 Scikit-learn 函数和工具集成,使得数据分析和机器学习变得更加简单和高效。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值