读论文
更新中
图像集人脸识别中高斯分布黎曼流形的判别分析
摘要
为了解决使用图像集进行人脸识别的问题
我们的目标是获取每个图像集中潜在的数据分布,从而促进更鲁棒的分类。
为此,我们将图像集表示为由多个具有先验概率的高斯分量组成的高斯混合模型(GMM),并试图从不同类别中区分高斯分量。
由于从信息几何的角度来看,高斯分布在一个特定的黎曼流形上,因此本文提出了一种高斯分布黎曼流形的判别分析方法。我们研究了高斯之间的几个距离度量,并相应地提出了两个区分学习框架来满足特定流形的几何和统计特征。
第一个框架导出一系列可证明的正定概率核,以将流形嵌入到高维希尔伯特空间中,在该空间中可以应用在欧几里德空间中开发的传统鉴别分析方法,并且设计了加权核鉴别分析,其学习高斯成分在高斯混合模型中的鉴别表示,其先验概率作为样本权重。
另外,另一种框架将经典的图嵌入方法扩展到流形,利用高斯点之间的距离度量来构造邻接图,从而将原始流形嵌入到低维的、有区别的目标流形中,同时保留几何结构分离度最大化。该方法通过在四个最具挑战性和最大的数据库上的人脸识别和验证任务进行评估,以证明其优于现有技术。
(即方法一为流形嵌入高维空间,再用欧几里得空间的方法
方法二为在流行空间中定义指标)
正文
随着多媒体技术的飞速发展,基于图像集的人脸识别问题越来越受到重视。这个问题自然会出现,以满足广泛的现实世界的应用ÿ