【高数】用拉格朗日中值定理解决极限问题

首先回顾一下拉格朗日定理的内容:

函数f(x)是在闭区间[a,b]上连续、开区间(a,b)上可导的函数,那么至少存在一个\delta,使得:

\frac{f(b)-f(a)}{b-a}=f'(\delta )

通过这个表达式我们可以知道,f(x)是函数的主体,a和b可以看作是主体函数f(x)中所取的两个值。

那么可以有,f(b)-f(a)=f'(\delta )(b-a)   (\delta =h(x) or \delta =g(x))也就意味着我们可以用f'(\delta )(b-a)来替换f(b)-f(a)  这种替换可以用在求某些多项式差的极限中。

方法:

\lim_{x \to 0}f(h(x))-f(g(x))  外层函数f(x)是一致的,并且 h(x)和g(x)是等价无穷小。此时,利用拉格朗日定理,将原式替换为f'(\delta )[h(x)-g(x)] ,再进行求解,往往会省去复合函数求极限的很多麻烦。

使用要注意:

1.要先找到主体函数f(x),即外层函数必须相同

2.f(x)找到后,复合部分是等价无穷小

3.要满足作差的形式。如果是加和,需要化成差的形式,再用拉格朗日定理。

【疑点】为什么复合部分得是等价无穷小?

其实利用拉格朗日定理,目的是抽离符合部分,简化运算过程。

\delta是在(a,b)上的,这里将h(x)和g(x)当作了端点值a、b,让\delta取用了这两个端点值的其中任一种。当复合部分是等价无穷小时,\delta才可以取用其中任意一种,来满足拉格朗日定理。

学以致用

eg1.\lim_{x\to0 }\frac{cos(sinx)-cos(sintanx)}{x^{4}}

解答:f(x)=cossinx,x\sim tanx

利用拉格朗日定理,可有原式等价于\lim_{x \to 0}\frac{f'(\delta )(x-tanx)}{x^{4}}

进而有,\lim_{x \to 0}\frac{-sinsinx\times cosx(x-tanx)}{x^{4}}

又有sinsinx\sim sinx\sim x,x-tanx\sim -\frac{1}{3}x^{3}

故答案为\frac{1}{3}

eg2.\lim_{x\to 0}\frac{e^{sinx}-e^{tanx}}{ln(x+1)x^{2}}

解答:

f(x)=e^{x} , sinx\sim tanx,且分母部分ln(1+x)\sim x

故利用拉格朗日定理有,原式等价于\lim_{x \to 0}\frac{cosxe^{sinx}(sinx-tanx)}{x^{3}}

cosxe^{sinx}\rightarrow 1,sinx-tanx\sim -\frac{1}{2}x^{3}

故答案为-\frac{1}{2}

  • 4
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值