珊珊333333
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
15、动态地图与机器人运动规划:原理、应用与未来展望
本文深入探讨了动态地图在机器人运动规划中的原理、应用与未来发展方向。重点分析了DTC-RRT*和CLiFF-RRT*等流量感知算法的优势,比较了不同类型动态地图(如空间配置变化地图、轨迹地图、速度地图、CT-Map和CLiFF-Map)的特点与适用场景。文章还介绍了动态地图在室内服务机器人和室外自动驾驶中的实际应用,并提出了未来研究的关键方向:处理时间变异性、考虑空间依赖性以及提升模型鲁棒性。最后展望了多传感器融合、人工智能深度集成、云协同规划与物联网结合等发展趋势,展示了动态地图技术推动机器人智能化的重要原创 2025-10-07 10:37:47 · 85 阅读 · 0 评论 -
14、基于运动分布(MoDs)的运动规划技术解析
本文深入解析了基于运动分布(MoDs)的机器人运动规划技术,重点探讨了DTC成本与上游成本的差异及其对轨迹生成的影响。文章详细介绍了最小信任因子和Dijkstra图两种高效采样策略,并通过CLiFF-RRT*与DTC-RRT*的实验评估,验证了结合先验运动信息在提升规划效率、降低轨迹成本和增强流畅性方面的显著优势。实验结果表明,利用CLiFF-map中的协方差和运动-观察比率可有效引导采样过程,实现更智能、更自然的路径规划。原创 2025-10-06 15:58:22 · 40 阅读 · 0 评论 -
13、基于运动描述符的机器人运动规划
本文探讨了基于运动描述符(MoDs)的机器人运动规划方法,重点介绍了RRT*算法及其在考虑人流方向、拥堵情况等环境因素下的扩展应用。通过引入DTC成本和上游成本等新型成本函数,结合CLiFF地图提供的运动信息,实现了顺应人流、避免拥堵等期望行为的路径规划。同时,提出信息采样函数以提升规划效率,并通过实验验证了考虑MoDs的规划器在路径长度、规划时间、路径质量及行为符合度方面的优势。最后展望了该技术在复杂环境、多机器人协同与动态信息更新中的未来发展方向。原创 2025-10-05 09:52:06 · 28 阅读 · 0 评论 -
12、运动模式建模与规划:CLiFF - map的应用与发展
本文系统探讨了CLiFF-map在运动模式建模与规划中的应用与发展。分析了不同插补方法(MC与NW)对稳定性的影响,介绍了CLiFF-map的构建流程与关键设计选择,如聚类方法和核大小。文章总结了其在灵活性、数据处理、鲁棒性和运动规划改进方面的优势,同时指出了其在全局模式建模、正态分布假设和离散分布上的局限性。进一步提出了未来发展方向,包括在线学习、引入先验知识、时间域与事件相关模式建模,以及将空间信息融入致密化过程的方法。通过模拟验证了考虑障碍物的距离度量在致密化中的有效性。整体表明,CLiFF-map具原创 2025-10-04 14:43:51 · 32 阅读 · 0 评论 -
11、环形线性流场图的运动模式建模评估
本文系统评估了环形线性流场图(CLiFF-图)在建模多模态运动模式中的性能,涵盖稳定性分析、映射质量与致密化效果。通过爱丁堡行人数据集、无人机风数据集和铸造厂数据集的实证研究,比较了不同EM初始化方法(如k-means、MS、OPTICS)和致密化方法(MC与NW插补)对模型质量的影响。定量与定性结果表明,CLiFF-图能有效捕捉方向与速度分离的复杂流动特征,MC插补更适用于保留湍流结构,而初始化策略需根据簇数量与拟合精度权衡选择。文章还提出了实际应用中的方法选择建议,并展望了模型优化、实时处理与多源数据融原创 2025-10-03 16:53:48 · 27 阅读 · 0 评论 -
10、环形 - 线性流场地图的运动模式建模:方法与评估
本文深入探讨了环形-线性流场地图(CLiFF-map)在运动模式建模中的应用,重点介绍了脊线分析用于修剪冗余聚类、地图致密化处理稀疏数据的两种插补方法(蒙特卡罗与Nadaraya Watson),以及四种评估模型性能的方法:贝叶斯信息准则(BIC)、散度估计器、k折交叉验证和稳定性地图。通过综合运用这些技术,可有效提升CLiFF-map的建模精度与可靠性,适用于交通流量、气象预测和人群行为分析等场景。原创 2025-10-02 16:56:46 · 32 阅读 · 0 评论 -
9、圆形 - 线性流场图的运动模式建模
本文介绍了基于圆形-线性流场图(CLiFF-map)的运动模式建模方法,结合方向与速度大小的异质特性,提出使用半包裹正态分布(SWND)和半包裹高斯混合模型(SWGMM)对多模态动态现象进行概率建模。通过引入运动比率和观测比率,量化运动强度与信息可靠性。地图构建过程包括数据离散化、圆形-线性空间中的数学运算、聚类初始化及EM算法参数拟合,支持Mean Shift、k-means和OPTICS等聚类策略,并讨论了实际应用中的选择依据与未来优化方向。原创 2025-10-01 11:48:13 · 27 阅读 · 0 评论 -
8、移动机器人空间运动模式的概率映射方法解析
本文系统解析了移动机器人在动态环境中空间运动模式的概率映射方法,重点介绍了T-CT-Map和CT-Map的构建过程、特点、优势与局限性。T-CT-Map基于带时间戳的二进制占用网格序列建模,增强了对运动方向和时间信息的表达能力,适用于离散动态对象的局部运动建模;而CLiFF-map则通过高斯混合模型将离散与连续流动统一建模为连续场,支持从稀疏数据中构建致密运动地图,具有更强的灵活性和表达能力。文章还探讨了当前方法在全局模式建模、参数估计鲁棒性等方面的不足,并展望了未来在过渡检测优化、运动预测与规划中的应用拓原创 2025-09-30 13:11:52 · 22 阅读 · 0 评论 -
7、基于条件转移图的运动模式建模
本文介绍基于条件转移图(CT-map)和时间条件转移图(T-CT-map)的运动模式建模方法,通过条件概率建模入口与出口转移之间的依赖关系,并结合时间信息提升动态环境下的建模精度。文章详细阐述了模型结构、离线与在线参数学习方法,以及利用CPP-tree提取全局运动模式的技术。通过对环形交叉路口等实际场景的映射分析,验证了该方法在提供运动方向、支持多模态处理等方面的优势。同时指出了当前方法在参数存储、分布假设和模式更新方面的局限性,并提出了引入遗忘机制、改进分布模型和融合语义信息等未来研究方向。该建模方法在机原创 2025-09-29 14:16:03 · 30 阅读 · 0 评论 -
6、条件转移图对运动模式的建模
本文介绍了条件转移图(CT-map)及其时间扩展形式T-CT-map在运动模式建模中的应用。通过从环境快照构建二进制占用网格地图,并提取单元格的时间序列,利用起始检测或互相关方法分析相邻单元格间的占用转移依赖关系。CT-map建模空间方向上的转移概率,而T-CT-map进一步引入转移持续时间的分布。文章详细阐述了数据预处理、转移检测方法(特别是基于互相关的鲁棒方法)、过渡概念的重要性以及进入与退出转移联合建模对提升预测准确性的意义,适用于复杂交通场景中的运动模式理解。原创 2025-09-28 09:54:12 · 18 阅读 · 0 评论 -
5、动态地图与运动规划:原理、挑战与解决方案
本文深入探讨了动态地图的原理与分类,包括空间配置变化地图、速度地图和轨迹地图,并分析了轨迹映射的技术流程、应用及挑战。文章进一步介绍了基于动态地图的运动规划方法,涵盖采样规划器、规则向量场和人类运动模式驱动的规划策略。同时,提出了基于条件转移图(CT-map)和时间条件转移图(T-CT-map)的环境动态建模方法,强调其在捕捉环境连续变化中的优势。最后总结了当前技术面临的挑战,并展望了未来在数据处理、算法优化、模型融合和实时性提升等方面的研究方向。原创 2025-09-27 10:03:11 · 50 阅读 · 0 评论 -
4、动态映射方法综述
本文综述了机器人在动态环境中进行映射的多种方法,涵盖空间配置变化映射、速度映射与轨迹映射三大类。详细分析了动态忽略、动态去除、动态地图更新和动态映射四类技术的原理与优劣,并探讨了连续介质流与离散对象流的建模范式。文章进一步展示了速度与轨迹映射的综合应用流程,提出了未来向智能化、多传感器融合及高实时性发展的趋势,为机器人环境感知与导航提供了系统性的方法论支持。原创 2025-09-26 13:05:42 · 53 阅读 · 0 评论 -
3、动态地图构建:挑战、分类与方法
本文系统探讨了动态地图(Maps of Dynamics, MoD)在机器人导航中的构建挑战、分类体系与核心方法。文章分析了数据随机性、部分可观测性和表示设计三大挑战,提出了基于速度、轨迹和空间配置变化的动态感知分类,并区分了连续介质流动与离散对象运动两类动态模式。进一步介绍了基于空间配置变化、轨迹和速度观察的三种MoD类型及其优劣,强调速度与空间变化映射在噪声和不完整观测下的鲁棒性。最后阐述了动态地图在机器人运动规划中的闭环应用流程,并展望了其在智能系统中的广阔前景。原创 2025-09-25 13:32:48 · 38 阅读 · 0 评论 -
2、机器人动态环境感知与地图构建
本文探讨了机器人在动态环境中进行感知与地图构建的关键问题。从世界动态性的时空模式出发,分析了静态世界假设的局限性,并比较了运动预测与动态地图在运动规划中的应用。通过机场和无人机两个场景示例,展示了动态地图的实际价值。文章还深入讨论了构建动态地图面临的三大挑战:数据随机性、部分可观测性和表示设计,提出了多机器人协作与融合策略,并对比了栅格、矢量与概率地图等表示方法。最后总结指出,动态地图是实现机器人智能适应复杂现实环境的核心,未来需持续创新以应对各类挑战。原创 2025-09-24 12:00:39 · 48 阅读 · 0 评论 -
1、动态地图:让机器人融入动态世界的关键
本文探讨了动态地图(Maps of Dynamics, MoDs)在机器人融入动态世界中的关键作用。传统机器人依赖静态环境假设,难以应对真实世界中频繁的人类活动与环境变化。动态地图通过嵌入速度、方向等动态信息,提升机器人在复杂场景如机场导航、气体源定位中的适应性与安全性。文章详细介绍了两种核心建模方法——条件转移图(CT-map)和圆-线性流场图(CLiFF-map),涵盖其构建流程、关键技术挑战及在基于采样运动规划中的应用。同时,讨论了模型评估方法如BIC、交叉验证,并展望了未来在流图优化、高效规划算法与原创 2025-09-23 09:13:24 · 26 阅读 · 0 评论
分享