985华东师范大学,新计算机科学与技术学院成立

68ff3fabae7779f42fabf11bf5c4ddf2.jpeg

华东师范大学举行新计算机科学与技术学院成立大会暨人工智能与人文社会科学对话圆桌论坛。

为适应人工智能快速发展的新形势,充分发挥华东师范大学计算机科学与教育科学的综合优势,学校决定合并上海智能教育研究院(教育部哲学社会科学智能教育实验室)与计算机科学与技术学院建新的计算机科学与技术学院

85cf475d22b7868169a769ce2fe119e1.jpeg

华东师范大学校长钱旭红,教育学部主任袁振国教授,以及新班子成员为新学院揭牌,校党委书记梅兵发表讲话。

94b9a289f1e99a235decf82b76091a5d.png

据介绍,上海智能教育研究院(智能教育实验室)系华东师范大学与上海市教育委员会共建研究机构,教育部与上海市教育综合改革共建重点项目。

上海智能教育研究院与智能教育实验室,实行一体化运营,两块牌子一套人马。研究院(实验室)设立管理委员会和学术委员会,管理委员会请华东师范大学校长钱旭红院士担任主任委员,负责研究院的战略规划与中长期管理;学术委员会请国内外知名专家学者组成,负责把关研究院的科研主攻方向和重大学术问题研讨。

abb572914bbec075184a9ede77a06820.jpeg

华东师范大学计算机科学与技术学院的前身主体是创建于1979年的计算机科学系。计算机科学系是国内成立较早的计算机系科,建系当年即招收计算机科学专业本科生。建系初期即设有计算机应用硕士点,1985年增设计算机软件与理论硕士点,1993年计算机科学系加入理工学院,1999年“计算机科学系”更名为“计算机科学技术系”,2001年加入信息科学与技术学院,2003年获计算机系统结构硕士点,2006年获计算机应用技术二级学科博士点,2010年获计算机科学与技术一级学科博士点,2012年获批计算机科学与技术博士后流动站,从而拥有了硕士、博士、博士后完整的学科体系。2015年9月,计算机科学技术系与软件工程学院合并,成立计算机科学与软件工程学院。2017年计算机科学与技术学科接受了教育部组织的第四轮学科评估,在238所参评高校中被评为B+档(全国前10%-20%)。

2019年,华东师范大学成立信息学部,以计算机科学技术系为主体,调入原计算机科学与软件工程学院部分师资建立计算机科学与技术学院,计算机科学与技术学院隶属于信息学部。2019年,计算机科学进入相关学科领域全球高校及科研机构ESI(基本科学指标数据库)排名前1%;2021年,计算机科学与技术本科专业进入教育部基础学科拔尖学生培养计划2.0,入选国家级一流本科专业建设点。

来源:综合自华东师范大学、华东师范大学计算机学院

fe76e353d44b2c35f302f1ace6f56fc6.jpegbd62c1dcb210de1ebcad2b2f22f21d11.jpeg

6b14d5b5bcafc37f5d6fdebe753ad9ac.jpeg

fda0ce842f5f62d128422a2d8aed51ee.jpeg

084da3eb24d50b4288e20c3395c83359.jpeg

您还可以在以下平台找到我们

56c80d69cd9a742e56b898e916bdf150.jpeg

8d14b552b1e1abea890d1b46f7368230.jpeg

8a0a97a37d0eb5c99422043aa5f6cd86.jpeg

8586351c91fa7a2d63905205941212db.jpeg

你点的每个在看,我都认真当成了喜欢d8b02ca10954a7943c2b4b235a4fee0c.png

<think>好的,用户现在问的是“比deepseek更好的ai”。首先,我需要明确用户所说的“deepseek”具体指的是哪一个AI产品或公司。因为“DeepSeek”可能指的是深度求索公司,他们专注于AGI的研究,也有自己的AI模型,比如DeepSeek-R1。也有可能是用户拼写错误,或者指的是其他类似名称的产品。所以首先需要确认这一点。 用户可能已经了解过DeepSeek,现在想寻找比它更好的AI,但“更好”的标准是什么?不同场景下对AI的需求不同。比如,有的用户可能更关注模型的通用能力,有的关注特定领域(如编程、数学),有的关注多模态能力,或者响应速度、成本等。所以需要先分析用户的需求点。 接下来,我需要比较目前主流的AI模型,看看哪些在特定方面可能优于DeepSeek。例如,GPT-4在通用任务上表现优异,Claude 3在长文本处理上更强,Gemini 1.5 Pro支持超长上下文,而国内的一些模型如GLM-4、通义千问、Kimi可能在中文处理或特定功能上有优势。此外,开源模型如Llama 3和Mistral也可能在某些定制化场景下更好。 用户可能没有明确说明应用场景,所以需要建议根据具体需求选择模型。比如,如果是需要处理超长文本,Kimi可能更适合;如果是编程,GitHub Copilot或ChatGPT更合适。另外,用户可能对成本敏感,这时候可能需要推荐性价比高的模型,或者开源可自行部署的选项。 还要考虑用户是否有技术背景。如果他们有能力自己部署和调优模型,开源模型可能更合适;否则,商业化的API或服务更方便。此外,用户可能对数据隐私有要求,这时候需要推荐可以本地部署的模型。 最后,需要提醒用户,AI领域发展迅速,模型的优劣可能随时间变化,建议持续关注最新动态。同时,不同模型的优势领域不同,没有绝对的“更好”,只有更适合的。</think>在AI领域,"更好"的定义取决于具体需求场景(如通用能力、垂直领域表现、成本效益等)。以下从不同维度分析当前(2024年)具有竞争力的AI模型/产品,并附对比建议: --- ### 一、**综合能力领先的通用大模型** #### 1. **GPT-4 & GPT-4o(OpenAI)** - **优势**: - 多模态能力最强(支持文本/语音/视觉交互) - 复杂推理能力突出(如解决包含$$ \sum_{k=1}^n \frac{k^3}{2^k} $$的数学推导) - 知识截止时间更新至2023年10月(比多数模型的2022年更近) - **适用场景**:科研分析、跨领域问题解决、创意生成 #### 2. **Claude 3 Opus(Anthropic)** - **突破点**: - 支持200K tokens超长上下文(相当于15万汉) - 法律/医疗等专业领域理解更精准 - 根据论文测试,在GSM8K数学基准测试准确率达95.2% --- ### 二、**垂直领域特化模型** #### 1. **GitHub Copilot(代码场景)** - **对比优势**: - 直接集成在VS Code等IDE中 - 支持全栈语言(从Python到Rust) - 根据2024 Stack Overflow调查,开发者使用率高达73% #### 2. **AlphaGeometry(DeepMind)** - **数学能力突破**: - 在IMO级别几何题上达到人类金选手水平 - 可自动生成包含$$ \frac{AB}{CD} = \frac{BC}{AD} $$的证明步骤 --- ### 三、**国产自研模型** #### 1. **GLM-4(智谱AI)** - **特点**: - 中文理解能力优于GPT-4(诗词创作/古文翻译) - 支持10万长文本处理 - 单位token成本比DeepSeek低约30% #### 2. **通义千问2.5(阿里云)** - **行业应用**: - 企业级知识库微调响应速度提升50% - 内置金融/法律等专业模式 #### 3. **Kimi(月之暗面)** - **长文本突破**: - 支持200万上下文(技术白皮书/长篇小说分析) - 根据输入内容自动生成思维导图 --- ### 四、**开源替代方案** #### 1. **Llama 3(Meta)** - **技术参数**: - 700亿参数版本数学推理能力超过GPT-3.5 - 支持商业免费使用(需自行微调) #### 2. **Mistral 8x22B** - **性价比优势**: - 相同硬件下推理速度比DeepSeek快1.8倍 - 在HuggingFace开源模型排行榜持续前三 --- ### 五、**选择建议** | 需求维度 | 推荐方案 | 关键指标对比 | |------------------|------------------------------|------------------------------| | 多模态交互 | GPT-4o | 支持视频理解/实时语音 | | 中文专业领域 | GLM-4 | 中文NER准确率92.7% | | 企业私有化部署 | 通义千问 | 支持全链路数据隔离 | | 长文本处理 | Kimi | 200万上下文记忆 | | 数学/逻辑推理 | AlphaGeometry + GPT-4 | IMO级问题解决率85% | | 低成本开发 | Llama 3 70B | 商用授权成本为0 | --- ### 六、**未来趋势观察** 1. **多模态融合**:Google Gemini 1.5 Pro已实现音频/视频/代码多模态统一表示 2. **小型化模型**:Phi-3-mini(微软)仅38亿参数但数学能力超越部分70B模型 3. **具身智能**:Figure 01等机器人正实现大模型与物理世界的直接交互 建议根据具体场景需求组合使用(如用Kimi处理长文档+GPT-4做分析),同时关注AI进化速度,主流模型每3-6个月会有显著能力跃升。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值