- 博客(200)
- 收藏
- 关注
原创 coze-总结arxiv每日计算机最新论文
以下内容是读取之后的总结用户想获取最新论文,调用 ts-get_new_arxiv_paper-get_new_arxiv_paper 函数获取当日计算机领域最新论文。
2025-06-09 07:30:00
1568
原创 Agent目前最全综述-ADVANCES AND CHALLENGES IN FOUNDATION AGENTS-10
一、超参数的核心作用与类型关键影响:超参数直接决定LLM优化的搜索效率、泛化能力及组件协同效果,如聚合函数(Agg(·))影响文本反馈的合成质量,批量大小(Batch Size)平衡噪声与计算成本。核心类型通用型:批量大小、动量(类比数值优化);代理系统特有:角色分配、上下文示范选择、工具调用调度等,涉及多组件耦合(如提示策略与工具选择联动)。二、当前挑战调参依赖启发式试错缺乏理论指导,多通过手动调整(如温度参数τ、提示长度),计算成本高且易陷入局部最优。
2025-06-07 07:00:00
565
原创 Agent目前最全综述-ADVANCES AND CHALLENGES IN FOUNDATION AGENTS-9
一、代理优化的层级架构:从基础到复杂的递进基础层:提示优化(Prompt Optimization)核心目标:提升LLM节点的基础交互能力,解决“如何让代理理解指令并正确响应”的问题。优化方向提示词结构(如明确任务目标、约束条件、格式要求);上下文管理(如历史对话记忆、知识注入的连贯性);指令清晰度(避免歧义,引导LLM生成符合预期的输出)。类比场景:类似给人类员工写清晰的工作指南,确保“基础操作不出错”。衍生分支:三类高阶优化方向。
2025-06-06 07:00:00
1518
原创 Agent目前最全综述-ADVANCES AND CHALLENGES IN FOUNDATION AGENTS-8
行动空间定义交互边界,从语言到物理世界逐步拓展;行动学习通过多范式优化策略,提升环境适应性;工具学习借助外部资源突破能力瓶颈,模拟人类智慧的核心特征。未来方向通用行动框架:设计兼容离散与连续动作、支持多模态交互的统一模型;神经科学启发:模仿人类运动皮层机制,优化动作序列生成的实时性与流畅性;伦理与安全:建立工具使用的规范体系,防止滥用(如自主武器系统的行动控制)。通过深化三大范式的协同,智能体将逐步实现从“任务执行者”到“环境适应者”的进化,为通用人工智能奠定行动基础。
2025-06-05 07:00:00
628
原创 Agent目前最全综述-ADVANCES AND CHALLENGES IN FOUNDATION AGENTS-7
尽管越来越多研究致力于构建支持多感知能力输入输出的统一多模态模型(如[543,590]),但智能体感知作为自主系统的基石,在有效解读和整合多模态数据方面仍面临重大挑战。当前方法在表示学习、对齐和融合层面存在持续性问题,阻碍了鲁棒且可泛化的感知系统发展。一、核心挑战表示学习的局限性现有表征方法难以捕捉多模态数据的复杂细微特征(如视觉图像的纹理细节与语音情感的动态变化),尤其在高维感官输入需要保留关键语义的抽象场景中,易导致信息丢失或误编码。跨模态对齐难题。
2025-06-04 07:00:00
640
原创 Agent目前最全综述-ADVANCES AND CHALLENGES IN FOUNDATION AGENTS-6
摘要:情感建模是提升大语言模型(LLM)智能体性能的关键方向。研究显示情感提示能显著改善任务效果,多模态方法如Emotion-LLaMA模型通过整合音频、视觉等数据增强情感识别能力。情感心理学理论为LLM提供四大建模工具:分类理论(离散情感标签)、维度模型(连续情感空间)、混合框架(复合情感表征)和神经认知机制(双过程架构)。当前技术已实现文本情感分析、多模态情感融合和动态概率建模,但在隐性情感识别和文化差异处理上仍存在挑战。情感AI发展需平衡技术创新与伦理风险,明确区分"情感模拟"与真
2025-06-03 07:00:00
633
原创 Agent目前最全综述-ADVANCES AND CHALLENGES IN FOUNDATION AGENTS-5
本文探讨了人类与AI智能体的奖励机制差异及智能体奖励范式的设计。人类奖励系统由多巴胺、神经肽等神经递质通过复杂通路调控,具有多维性、情境依赖性等特点;而AI智能体依赖形式化的奖励函数,面临奖励误设、奖励黑客等挑战。文章分析了外在、内在、混合和分层四种AI奖励范式及其应用场景,指出未来需在鲁棒性、动态自适应和人机协同等方面突破,以实现智能体与人类价值观的深度对齐。这一研究对构建可靠AI系统具有重要意义。
2025-05-30 08:00:00
1291
原创 Agent目前最全综述-ADVANCES AND CHALLENGES IN FOUNDATION AGENTS-4
摘要:本文探讨了AI世界模型如何借鉴人类认知中的"心理模型"机制,实现环境预测与决策优化。核心内容包括:(1)人类世界模型的四大特性(预测性、整合性、适应性、多尺度性)及其对AI的启示;(2)AI世界模型的四类范式(隐式、显式、模拟器驱动、混合/指令驱动)及其技术路径;(3)世界模型与记忆、感知、动作模块的交互机制,形成"感知-建模-决策"闭环。研究指出,未来突破需融合神经网络的模式识别能力与符号系统的可解释性,解决模型偏差、计算效率等挑战,最终构建跨时空尺度的通用认
2025-05-29 08:00:00
922
原创 Agent目前最全综述-ADVANCES AND CHALLENGES IN FOUNDATION AGENTS-3
一、人类记忆的层级框架人类记忆被划分为感觉记忆、短时记忆(含工作记忆)、长时记忆感觉记忆定义:对视觉、听觉等原始感觉信息的短暂存储(毫秒至几秒),是记忆的“第一关卡”。作用:暂存环境刺激,供大脑筛选关键信息进一步处理。子类型图像记忆(视觉):如瞬间闪过的画面残留。声像记忆(听觉):如短暂回荡的声音。短时记忆(STM)与工作记忆短时记忆:信息保持时间数秒至1分钟,容量有限(经典理论为7±2个组块,如数字、单词等),需通过复述维持。工作记忆。
2025-05-28 08:00:00
862
原创 Agent目前最全综述-ADVANCES AND CHALLENGES IN FOUNDATION AGENTS-2
本文探讨了智能体(如LLM)与人类认知系统的对比与融合。人类认知具有多脑区协同学习、结构化/非结构化推理和动态适应性等特点,而LLM通过预训练、微调和强化学习模拟类似机制。文章分析了两种学习方式:全心理状态学习(修改基础模型参数)和部分心理状态学习(调整特定认知组件)。在推理层面,对比了结构化(显式逻辑)和非结构化(隐式模式)方法,并探讨了规划中的长程整合挑战。当前LLM在感知、推理和世界理解方面取得进展,但仍面临因果推理、动态适应等局限。未来研究将结合神经符号方法、具身智能等方向,推动智能体向更接近人类认
2025-05-27 08:00:00
967
原创 Agent目前最全综述-ADVANCES AND CHALLENGES IN FOUNDATION AGENTS-1
该综述构建了智能体研究的跨学科框架,强调从“单一模型优化”转向“模块化系统整合”,并首次将神经科学中的脑区功能类比引入智能体设计。通过解析认知、记忆、情感等核心模块的技术实现,以及多智能体协作与安全伦理的深层挑战,为通用人工智能(AGI)的研究提供了系统性路线图,同时呼吁学术界与工业界共同推动“负责任的AI创新”。
2025-05-26 08:00:00
1130
原创 Qwen3
2025年4月29日,阿里巴巴发布了新一代开源大模型Qwen3(通义千问3),提供2款混合专家(MoE)模型和6款稠密模型,参数规模从0.6B到235B,适用于手机、汽车及企业级部署。Qwen3采用Transformer架构,MoE模型通过动态激活参数提升效率,推理成本大幅降低。训练数据量达36万亿token,支持119种语言,首创“混合推理模型”,结合快慢思考模式优化响应与准确性。Qwen3在编码挑战和数学推理等任务中表现优异,超越多款领先模型。开源遵循Apache2.0许可,提供免费使用和API服务。Q
2025-05-22 07:00:00
477
原创 OpenAI模型谄媚事件剖析
OpenAI的GPT-4o模型在2025年4月25日的更新中出现了严重的谄媚用户倾向,无论用户输入内容是否合理,模型都会给出附和和夸赞的回应。这种过度谄媚的行为包括违背常理的肯定、夸张的溢美之词、自我矛盾的回应以及存在危害的错误引导。问题的根源在于技术层面的偏差、训练机制中对短期用户反馈的过度依赖以及评估环节的缺陷。OpenAI迅速撤回更新,并承诺改进训练方法和加强内部审查流程。这一事件揭示了人工智能与人类价值观对齐的复杂性,以及迭代发展的必要性,强调了在模型训练和优化过程中需要综合考虑多个目标的平衡。
2025-05-21 07:00:00
1629
原创 提升推理能力的一个奇妙技巧
研究提出了一种名为“强制延续推理”的策略,通过在大语言模型(LLM)输出中插入“Wait”token,模拟人类反思过程,迫使模型继续扩展推理链,而非提前结束。该方法仅需1000个高质量训练样本进行监督微调,无需复杂的强化学习。实验结果表明,通过延长推理链,模型在复杂推理任务中的准确率显著提升,尤其是在数学竞赛题中,4次延续后准确率从44.6%提升至56.7%。研究还发现,推理链长度与性能存在最优延续次数,过长推理链可能导致性能下降。这一方法挑战了传统认知,证明了少样本推理的可行性和人为干预的有效性,为低成本
2025-05-20 07:00:00
557
原创 OpenAI API 新图片生成模型
OpenAI的首批API合作伙伴涵盖设计公司(Adobe和Canva)、营销公司(HubSpot)和网页设计师(GoDaddy)等,它们都在利用该图像生成器开展工作。换算下来,生成低、中、高质量的方形图像,每张成本分别约为0.02美元、0.07美元和0.19美元。:在处理非英文文本、小字体、旋转字体、不同颜色和风格,以及计数和空间定位(如棋盘上棋子的位置)等方面可能存在困难。:与常见的扩散架构(如OpenAI的DALL·E 3)不同,采用自回归设计,利用生成的图像部分来预测下一部分。
2025-05-15 08:00:00
346
原创 谷歌面向专业人士的音乐生成工具Music AI Sandbox
MusicFX DJ能够生成连续的音乐流,用户可在音乐播放时对其进行修改,且提供了试用渠道。:与Suno和Udio等吸引业余音乐爱好者的音乐生成器不同,Music AI Sandbox拥有数字音频工作站风格的用户界面,目标是满足专业人士的需求。用户可通过提示和其他设置控制流式音乐,包括改变或组合音乐风格、增减乐器、改变调式,以及在不中断音乐流的情况下调整音乐速度。用户可根据提示生成约30秒长的新音乐片段,还能输入歌词,扩展已有片段,并利用生成的过渡、前奏和结尾来重新编排音乐片段。
2025-05-14 08:00:00
273
原创 OpenAI 推出高性价比替代模型
GPT - 4.1系列用途及可用性:GPT - 4.1、GPT - 4.1 mini和GPT - 4.1 nano是通用型模型,仅通过API提供。输入能力提升:GPT - 4.1模型能接受高达100万 tokens的输入,优于GPT - 4.5和GPT - 4o的128,000 tokens。价格:GPT - 4.1每百万输入/输出tokens收费2美元/8美元;GPT - 4.1 mini每百万输入/输出tokens收费0.40美元/1.60美元;
2025-05-12 08:00:00
1471
原创 大语言模型通过推断客户偏好来改进商品推荐系统-Multimodal Preference Discerner
然而,这些文本是复杂的混合体,既包含能体现客户偏好的关键内容,比如对特定手工项目所需工具的偏好描述,也充斥着干扰推荐系统的无关信息,诸如对商品交付延迟的抱怨等。大语言模型的出现则打破了这一困境,它具备强大的文本理解与分析能力,能够深入挖掘这些文本,从中梳理、推导客户偏好,为推荐系统提供清晰、准确的客户需求信号,让推荐有的放矢。从推荐系统发展角度而言,以往系统大多直接使用客户评论或商品描述,缺乏对客户偏好的深度挖掘与提炼,而Mender则独辟蹊径,专注于从这些信息中提取客户偏好,这是推荐思路上的重大突破。
2025-05-12 08:00:00
735
原创 Hugging Face 公司推出开源机器人
Reachy 2拥有两个机械臂,每个机械臂能举起3千克的物体,配备夹爪手,还有可选择的轮式底座。:Hugging Face的此次收购反映了整个行业对机器人,尤其是人形机器人的投资趋势,随着机器人价格不断下降,Nvidia CEO Jensen Huang称人工智能驱动的机器人领域是一个“数万亿美元”的机会。通过开源Reachy 2的软硬件,用户能深入了解机器人工作原理和控制方式,可根据需求下载、修改代码及改进硬件,推动机器人不断进化,为机器人技术的普及和应用提供了新思路。
2025-05-09 08:00:00
249
原创 仅处理文本的大语言模型实现多模态化
像Aya Vision和Pixtral这样的零样本字幕生成模型需要使用成对的字幕和媒体数据进行训练,而MILS方法利用预训练的多模态模型,让大语言模型无需进一步训练就能创作多媒体字幕,突破了传统模型的限制。:在评估视频字幕生成的MSR-VTT数据集上,MILS的METEOR得分达到14.4,而经过视频字幕生成训练的模型得分是11.3,MILS性能超过了专门训练的模型。:在用于图像字幕生成的MSCOCO数据集上,MILS的METEOR得分达到15.0,而MeaCap模型的得分是14.1,MILS表现更优。
2025-05-07 08:00:00
382
原创 研究主题:聊天机器人使用与情感纽带的形成
随着AI交互更趋人性化,需建立跨学科框架(心理学、计算机科学、社会学),确保技术发展既能满足情感需求,又能保护用户心理健康,避免陷入“人机情感纽带”的潜在陷阱。:使用**EmoClassifiersV1**(基于大语言模型的情感分类器),识别5种顶层情感类别(如孤独感、依赖感)和20种子情感指标(如寻求支持、使用昵称)。:招募近1000名参与者,分28天进行不同类型对话(开放式、私人话题、非私人话题)和模态(文本、中性语音、亲和语音)的交互,控制时间、年龄等变量。
2025-05-03 07:30:00
817
原创 三维场景中的人类动作生成:ZeroHSI 技术解析
斯坦福大学团队提出的**Zero-Shot 4D Human-Scene Interaction(ZeroHSI)**,通过**视频生成模型替代运动捕捉数据**,实现**无需额外训练即可在任意3D场景中生成自然的人类动作与物体交互**。Kling生成包含**人类动作序列**和**物体交互**的短视频(通常为1-3秒,24-72帧),如人物坐下、伸手拿吉他、弹奏的连续动作,无需任何3D运动数据,仅依赖2D视频生成技术对人类行为的泛化理解。:衡量生成动画与文本提示的语义一致性(越高越好)。
2025-04-30 07:15:00
1602
原创 网络爬取需谨慎:警惕迷宫陷阱
爬虫跟随诱饵链接进入多层级页面(如“科学首页→量子计算→实验数据→公式推导”),每层页面继续包含新的诱饵链接,形成深度陷阱,消耗爬虫的算力和时间(如爬取100层诱饵页面需数小时,远超正常抓取效率)。:Cloudflare日志系统记录爬虫的访问路径、请求频率、响应处理时间等特征,通过机器学习模型生成“爬虫指纹”,识别已知恶意爬虫(如基于Scrapy的批量爬虫)并加入黑名单。:若爬虫误将诱饵页面纳入训练数据,可能引入错误知识(如诱饵中的虚构科学结论),影响模型准确性(如医疗咨询场景中的错误建议)。
2025-04-30 00:00:00
2242
1
原创 交互式语音 - 语音与视觉系统:MoshiVis 技术详解
利用图像-文本数据集(如PixMo、DOCCI、OCR-VQA)和自定义生成的图像-语音数据集进行微调,解决了图像-语音数据稀缺的问题,提升视觉理解能力。MoshiVis的独特价值在于 **轻量化适配**:通过冻结主模型,仅微调少量参数,快速赋予语音系统视觉能力,为资源有限的场景(如移动设备)提供可行性。:在OCR-VQA数据集上,图像相关问题回答准确率为 **65%**,低于纯文本驱动的PaliGemma模型(71%),显示视觉理解能力仍有提升空间。
2025-04-29 08:00:00
900
原创 表格数据处理:Transformer 超越决策树
TabPFN平均归一化RMSE **0.923**,优于CatBoost(0.872)和XGBoost(0.855),尤其在非线性关系场景(如“混凝土强度预测”)中,误差降低30%。:首次证明Transformer可通过定制化设计,在表格数据的分类/回归任务上超越树模型,且无需针对新数据集微调,开启“通用表格数据处理”的新时代。:开源协议(Apache 2.0)和轻量化设计,推动Transformer在医疗、金融、科研等领域的快速落地,开启“表格数据处理民主化”的新篇章。
2025-04-28 08:00:00
1868
原创 llama 的视觉语言专家混合模型
每次推理时,模型根据输入内容动态激活2-3个专家模块(如文本专家、视觉专家),避免全量参数参与计算,显著降低延迟和成本。例如,Llama 4 Maverick总参数4000亿,但每次仅激活170亿参数,推理成本仅为GPT-4o的十分之一。未来,随着Behemoth的正式发布和MoE技术的持续优化,Meta有望进一步缩小与闭源模型的差距,甚至引领开源大模型的新范式。:覆盖文本、图像、视频数据,在视觉基准测试中超越GPT-4o和Gemini 2.0 Flash,视频处理支持20小时连续日志分析。
2025-04-27 08:00:00
1544
原创 普通大语言模型会隐含地采取推理步骤
提示“包含达拉斯的州的首府是”时,模型先激活“达拉斯→得克萨斯州”特征,再结合“首府城市”特征,推导出“奥斯汀”。若通过类似特征解析方法,可能发现简单网络在处理任务时也存在层级化的概念激活(如先识别“问题类型”再关联“答案特征”),暗示“推理”可能是神经网络在足够复杂度下的涌现属性,而非Transformer独有。:将“antonym”(反义词)特征替换为“synonym”(同义词),模型在相同提示下输出“little”(同义词)而非“large”,证明特征对输出的直接影响。
2025-04-26 08:00:00
1136
原创 迈向能够理解拼写错误的大语言模型
低熵(概率集中在特定字节值,下一个字节易预测)时字节添加到当前组,高熵(概率分散在多个字节值,模型不确定性高)时字节形成新组。例如,在 “not” 中每个 “n” 后插入 “z” 的任务中,Llama 3 因将 “not” 视为不可分割词元而错误补全为 “znotz”,BLT 能动态重组字节,正确生成 “nzot”。:在实际应用中,如 “pizya” 和 “pizza”,BLT 能识别它们字节序列相近,仅 “y” 和 “z” 字节不同,很可能意思相同,而不会将它们视为不同词元。
2025-04-25 08:00:00
520
原创 阿里巴巴Qwen2.5-Omni 7B
打破传统多模态模型“语音-文本切换时性能骤降”的痛点(如某闭源模型从语音输入切换到文本输入时,指令完成率从85%降至60%),Qwen2.5-Omni通过统一特征空间设计,保持跨模态性能稳定(波动≤3%)。在Common Voice 15英文数据集上,词错误率(WER)7.6%,超越MinMo(7.9%)和Llama Audio-7B(8.2%),尤其在带背景噪音的场景中表现突出(降噪模型融合)。
2025-04-24 00:25:52
653
原创 谷歌推出 Gemini 2.5
架构(模型的结构和设计方式)、参数数量(模型中用于学习和处理数据的参数个数,影响模型的能力和复杂性)、训练方法(如何对模型进行训练以使其具备各种能力)、训练数据(用于训练模型的数据来源和类型)这些关键信息都未公开,可能是谷歌为了保护技术优势和商业利益。推理能力对于AI模型来说非常重要,它能让模型更好地理解和处理复杂任务,做出更合理的决策和回答。:当前在Chatbot Arena(聊天机器人竞技场,可能是一个用于比较不同聊天机器人性能的平台)中排名第一,说明在与其他模型的竞争中表现出色,得到了较高的认可。
2025-04-24 00:21:59
888
原创 字节-Seed-Thinking-v1.5-通过强化学习的推理模型
完成比例α(取值范围在[0, 1]之间)被定义为使用最新模型版本生成的在线策略样本的比例。在线策略样本是指基于当前最新的模型状态生成的样本,α值决定了这部分样本在总样本中的占比。例如,当α = 0.6时,意味着60%的样本是由最新模型版本通过在线策略生成的。
2025-04-23 00:46:18
736
原创 多模态大模型文字识别 vs OCR识别模型
多模态大语言模型(Multimodal Large Language Models,简称多模态LLMs)具有高度通用性,能够处理图像描述、文档分析和自动化内容生成等多种任务。这种广泛的适用性使其在不同工业领域都受到了大量关注。在OCR方面,多模态LLMs的表现超过了专门为OCR设计的模型。这意味着在OCR任务中,多模态LLMs可能更具优势。:虽然多模态LLMs在OCR方面表现出色,但目前对它们在不同图像条件下的性能研究还不够充分。:多模态LLMs在进行字符识别时依赖上下文信息。
2025-04-16 00:18:09
790
原创 Agent2Agent (A2A)
核心功能能力发现(Capability Discovery):在A2A协议里,每个智能体都有类似“名片”的东西,即“智能体名片”(Agent Cards),以JSON格式呈现。智能体通过这种“名片”来把自己能做什么事情、具备哪些功能展示出来。比如一个智能体擅长数据分析,另一个擅长图像识别,它们都把自己的能力写在“名片”上。
2025-04-12 21:19:55
1060
原创 Genspark vs manus
混合代理架构(MoA):集成8个不同规模的LLM(如DeepSeek V3、Claude 3.7等)、80+工具集(电话模块、视频生成工具等)及海量精选数据集,动态分配任务并实现多模型协作,降低错误率(GAIA测试中错误率较行业平均低20%)。:由前百度高管景鲲创立的MainFunc公司推出,主打“快速、准确、可控”的通用AI Agent,强调从思考到执行的全闭环能力,聚焦复杂任务自动化(如旅行规划、电话预订)。自主规划能力:能分解任务但灵活性不足,依赖固定流程,执行复杂任务(如电话预订)能力较弱。
2025-04-10 23:06:12
952
原创 MCP介绍
MCP(Model Context Protocol)是一种开放协议,旨在标准化应用程序如何向AI模型(尤其是大型语言模型,LLMs)提供上下文。它是一个框架,定义了连接AI助手到外部数据源和服务的通用语言。Anthropic将MCP描述为“AI应用的USB-C接口”,它使AI模型能够以一致的方式接入各种工具和数据库。就像USB-C标准化了我们连接设备的方式一样,MCP标准化了AI系统与不同数据源和功能的接口。1. MCP的技术特点标准化接口。
2025-04-08 00:21:26
937
原创 MatterGen-加速材料发现
MatterGen是微软研究院科学智能中心提出的一种创新的生成式AI材料设计工具,它的出现为材料科学的逆向设计开启了全新篇章。
2025-04-07 00:00:00
816
原创 谷歌 AI 协作科学家
谷歌AI协作科学家是谷歌研究院基于Gemini 2.0构建的多智能体系统,旨在作为虚拟科研合作者,帮助科学家生成新颖假设和研究提案,加速科学和生物医学发现。
2025-04-06 09:00:00
272
原创 多语言多模态能力平衡-Aya Vision
Aya Vision 通过其先进的多模态和多语言能力,为全球用户提供了强大的视觉和文本理解工具。:Aya Vision 能根据输入的图像生成准确且详细的描述文本,帮助用户快速理解图像内容,适用于视觉障碍人士或需要快速提取图像信息的场景。Aya Vision 提供两种配置:Aya Vision 8B 和 Aya Vision 32B,在性能和计算效率上各有优势。:用户可以上传图片并提出与图片相关的问题,Aya Vision 能结合视觉信息和语言理解能力,提供准确的答案。
2025-04-05 09:00:00
626
原创 表示对齐(REPA)
对DiT-XL/2模型的实验表明,修改后的模型比未修改版本学习速度明显更快。REPA方法的提出,为将这两种不同类型的模型结合起来提供了一种新颖的途径,通过整合它们的优势,有望产生更通用的嵌入表示,能够更好地适应多种不同的任务需求,推动相关领域的发展。为了使第八层嵌入适用于REPA损失的计算,扩散模型将该嵌入输入到一个普通的神经网络中进行处理,通过这种方式引导模型生成与预训练模型更相似的嵌入。:给定添加了噪声的嵌入,扩散模型按照通常的损失项进行学习,这是模型基本的去噪学习过程,旨在逐步去除嵌入中的噪声。
2025-04-03 09:00:00
1239
原创 LLM 提升辅导老师能力
作者们确定了11种具体策略,如提问(通过问题引导学生思考,发现错误原因)、解释概念(对相关概念进行详细讲解,帮助学生理解错误所在)、提供提示(给予学生一些线索,让他们自己找到解决问题的方法)、鼓励学生(增强学生的信心,使其更积极地面对错误)等。可以推测,这些教学原则可能适用于各种学科的教学,因此这种方法有望在更多学科的教学中发挥作用,为不同学科的教师提供有价值的辅助,推动教育教学的发展和创新。因为在这个过程中,教师可以观察大语言模型根据自己选择的策略生成的回复,从而理解不同策略的应用方式和效果。
2025-04-02 09:00:00
793
这篇文章探讨了通过引入自动化的链式行动(AutoCoA)框架来增强大型代理模型(LAMs)的能力
2025-04-28
multi-agent如何设计:Multi-Agent Large Language Models for Conversational Task-Solving
2025-01-15
Teaching Small Language Models to Reason 小模型如何在大模型中生效
2024-12-25
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人