快速幂

  因为以前吃过很多快速幂的亏,所以这次拿它作为我博客的第一篇文章。首先是简单的一个求n的n次幂再对m取余的程序(c语言)。

#include<stdio.h>

int main()

{

int n,i,m,s=1;

scanf("%d %d",&n,&m);

  for(i=0;i<n;i++)

{

s=s*n;

}

s=s%m;

printf("%d\n",s);

return 0;

}

  这个程序在n为比较小的数时并没有太大问题,只需要注意s不要超出范围;但是,在n大到一定程度的时候,比如到10的10次方等,就会因为速度过慢而导致超出时间上限。所以我们需要对程序进行一定的优化。经各方查证之后,我们有了如下引理:积的取余等于取余的积的取余。优化后的代码如下:

#include<stdio.h>

int main()

{

int n,i,m,s=1;

scanf("%d %d",&n,&m);

n=n%m;

  for(i=0;i<n;i++)

{

s=(s*n)%m;

}

s=s%m;

printf("%d\n",s);

return 0;

}

  另外,如果n是偶数,那么循环的次数就可以变为i/2,而运算过程改为s=(s*n*n)%m;另一方面,如果n是奇数,则需要加上一步s=(s*n)%m,所以整理一下可得:

#include<stdio.h>

int main()

{

int n,i,m,s=1;

scanf("%d %d",&n,&m);

n=n%m;

i=n;

  while(i>0)

{

if(i%2==1)

s=(s*n)%m;

i=i/2;

n=(n*n)%m;

}

printf("%d\n",s);

return 0;

}

这样的时间复杂度基本能过大多的题,进一步的快速幂还有待我进一步探索。

因为博主的水平有限,所以可能存在一些不足之处,烦请指正。

如有雷同,纯属巧合。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值