因为以前吃过很多快速幂的亏,所以这次拿它作为我博客的第一篇文章。首先是简单的一个求n的n次幂再对m取余的程序(c语言)。
#include<stdio.h>
int main()
{
int n,i,m,s=1;
scanf("%d %d",&n,&m);
for(i=0;i<n;i++)
{
s=s*n;
}
s=s%m;
printf("%d\n",s);
return 0;
}
这个程序在n为比较小的数时并没有太大问题,只需要注意s不要超出范围;但是,在n大到一定程度的时候,比如到10的10次方等,就会因为速度过慢而导致超出时间上限。所以我们需要对程序进行一定的优化。经各方查证之后,我们有了如下引理:积的取余等于取余的积的取余。优化后的代码如下:
#include<stdio.h>
int main()
{
int n,i,m,s=1;
scanf("%d %d",&n,&m);
n=n%m;
for(i=0;i<n;i++)
{
s=(s*n)%m;
}
s=s%m;
printf("%d\n",s);
return 0;
}
另外,如果n是偶数,那么循环的次数就可以变为i/2,而运算过程改为s=(s*n*n)%m;另一方面,如果n是奇数,则需要加上一步s=(s*n)%m,所以整理一下可得:
#include<stdio.h>
int main()
{
int n,i,m,s=1;
scanf("%d %d",&n,&m);
n=n%m;
i=n;
while(i>0)
{
if(i%2==1)
s=(s*n)%m;
i=i/2;
n=(n*n)%m;
}
printf("%d\n",s);
return 0;
}
这样的时间复杂度基本能过大多的题,进一步的快速幂还有待我进一步探索。因为博主的水平有限,所以可能存在一些不足之处,烦请指正。
如有雷同,纯属巧合。