统计学习方法1.统计学习方法概论

一、统计方法三要素

模型、策略(损失函数选择)、方法(优化方法 eg:梯度下降)

1.模型

1.1概率模型与非概率模型

统计机器学习描述

2.策略

此节参考链接link
损失函数(Loss Function):是定义在单个样本上的,是指一个样本的误差。
代价函数(Cost Function):是定义在整个训练集上的,是所有样本误差的平均,也就是所有损失函数值的平均。
目标函数(Object Function):是指最终需要优化的函数,一般来说是经验风险+结构风险,也就是(代价函数+正则化项)。
在这里插入图片描述损失函数对应着单个样本 而此时的对数损失函数类似于极大似然估计 希望能够最小化对数损失函数 又要最大化 p(y|x) 因此取负值
经验风险/平均损失
在这里插入图片描述
关于训练样本集的平均损失
风险函数/ 期望损失
在这里插入图片描述
利用模型和对应的联合分布P(X,Y)进行求解 但P(X,Y)未知 因此无法求解。

经验风险最小化(ERM):
利用对经验风险的最小化进行模型求解:
在这里插入图片描述
结构风险最小化
经验风险+正则化项
在这里插入图片描述
J(f)为模型的复杂度,与模型复杂度成正比。

3.方法

相关的对结构风险/经验风险的优化方法

二、过拟合

在这里插入图片描述模型复杂度低时,欠拟合
模型复杂度高时,过拟合

1、应对过拟合——正则化和交叉验证

正则化:结构风险最小化
在这里插入图片描述在这里插入图片描述交叉验证
在这里插入图片描述在这里插入图片描述

三、泛化误差

在这里插入图片描述具体证明见连接:link

四、生成模型和判别模型

在这里插入图片描述

五、分类、回归、标注

分类:y离散分布 分门别类
回归:y连续分布 曲线拟合
标注:
标注问题与分类问题类似。
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

六、总结

文章引用了书中的大量内容,算是对知识的总结与回顾,希望后续章节自己能够有更多自己的思考。
学而不思则罔,思而不学则殆。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值