一、统计方法三要素
模型、策略(损失函数选择)、方法(优化方法 eg:梯度下降)
1.模型
1.1概率模型与非概率模型
2.策略
此节参考链接:link
损失函数(Loss Function):是定义在单个样本上的,是指一个样本的误差。
代价函数(Cost Function):是定义在整个训练集上的,是所有样本误差的平均,也就是所有损失函数值的平均。
目标函数(Object Function):是指最终需要优化的函数,一般来说是经验风险+结构风险,也就是(代价函数+正则化项)。
损失函数对应着单个样本 而此时的对数损失函数类似于极大似然估计 希望能够最小化对数损失函数 又要最大化 p(y|x) 因此取负值
经验风险/平均损失:
关于训练样本集的平均损失
风险函数/ 期望损失:
利用模型和对应的联合分布P(X,Y)进行求解 但P(X,Y)未知 因此无法求解。
经验风险最小化(ERM):
利用对经验风险的最小化进行模型求解:
结构风险最小化:
经验风险+正则化项
J(f)为模型的复杂度,与模型复杂度成正比。
3.方法
相关的对结构风险/经验风险的优化方法
二、过拟合
模型复杂度低时,欠拟合
模型复杂度高时,过拟合
1、应对过拟合——正则化和交叉验证
正则化:结构风险最小化
交叉验证:
三、泛化误差
具体证明见连接:link
四、生成模型和判别模型
五、分类、回归、标注
分类:y离散分布 分门别类
回归:y连续分布 曲线拟合
标注:
标注问题与分类问题类似。
六、总结
文章引用了书中的大量内容,算是对知识的总结与回顾,希望后续章节自己能够有更多自己的思考。
学而不思则罔,思而不学则殆。