thrift使用问题汇总

本文汇总了在使用Thrift框架时遇到的典型问题,包括C++和Python客户端、服务器端的常见错误,如断言失败等。通过分析和解决这些问题,有助于深入理解Thrift的工作原理。
摘要由CSDN通过智能技术生成
1.注意生成thrift文件时,会出现
  • Assertion `docstring.length() <= strlen(doctext)' failed 
  该问题是由于linux换行符导致的,所以请保证文件换行符的正确性

2.一般情况下在使用多线程时,建议使用TNonBlocking模式,可以极大的提高性能,避免出现I/O瓶颈.

3.thrift不支持定长数组;无指针的概念;

4.接口即所谓的函数(方法)不可以单独出现,需放在service服务之内;

5.包
thrift-generator 是通过 Java 的接口生成 thrift 文件的工具。例子:public interface ICommonUserService {     public User login(int id, String name);     public User getUserById(long id);     public boolean saveUser(User user);     public List getUserIds(long id);      public Map getUserByIds(List ids);     public Map<String, List> getUsersByName(List names);     public Map<Long, List> getGroupUsers(List names, List userList, List lns, long ll);     public List testCase1(Map num1, List num2, List num3, long num4, String num5); } public class ThriftStructBuilderTest {     private ThriftFileBuilder fileBuilder = new ThriftFileBuilder();     @Test     public void toOutputstream() throws Exception {         this.fileBuilder.buildToOutputStream(ICommonUserService.class, System.out);     } }执行代码:mvn test -Dtest=com.sohu.thrift.generator.builder.ThriftStructBuilderTest之后控制台输出如下:namespace java com.sohu.thrift.generator.test.thrift     enum Status {             NORMAL = 0,             BLOCKED = 1     }     struct Account {             1:i32 id,             2:string name     }     struct User {             1:i32 id,             2:string name,             3:bool sex,             4:Status status,             5:list ids,             6:Account account     }     service ICommonUserService {             User login(1:i32 arg0,2:string arg1),             map<string, list> getUsersByName(1:list arg0),             bool saveUser(1:User arg0),             map getUserByIds(1:list arg0),             list getUserIds(1:i64 arg0),             map<i64, list> getGroupUsers(1:list arg0,2:list arg1,3:list arg2,4:i64 arg3),             User getUserById(1:i64 arg0),             list testCase1(1:map arg0,2:list arg1,3:list arg2,4:i64 arg3,5:string arg4)     }
### 回答1: Python可以通过以下方式连接Hive、Spark和MySQL: 1. Hive连接方式: - 使用pyhive库连接Hive:pyhive是一个Python库,可以通过它连接Hive。需要安装pyhive和thrift库,然后使用pyhive.connect()方法连接Hive。 - 使用pyhs2库连接Hive:pyhs2是另一个Python库,可以连接Hive。需要安装pyhs2和thrift库,然后使用pyhs2.connect()方法连接Hive。 2. Spark连接方式: - 使用pyspark库连接Spark:pyspark是一个Python库,可以连接Spark。需要安装pyspark库,然后使用SparkSession.builder.appName()方法创建SparkSession对象,从而连接Spark。 3. MySQL连接方式: - 使用pymysql库连接MySQL:pymysql是一个Python库,可以连接MySQL。需要安装pymysql库,然后使用pymysql.connect()方法连接MySQL。 - 使用mysql-connector-python库连接MySQL:mysql-connector-python是另一个Python库,可以连接MySQL。需要安装mysql-connector-python库,然后使用mysql.connector.connect()方法连接MySQL。 ### 回答2: Python和Hive都是在数据处理领域应用非常广泛的工具,它们分别有着各自的优点和适用场景。 Python作为一种高级编程语言,拥有简洁明了的语法,非常适合用于数据分析和机器学习等领域的编程。Python的强大之处主要体现在其丰富的第三方库和工具上。例如,NumPy、Pandas、Matplotlib和Scikit-learn等库,提供了非常丰富的数据处理和分析工具,可以快速高效地进行数据处理和可视化分析。此外,Python还支持多种数据格式的读写和转换,如JSON、CSV、Excel等,方便用户进行非常灵活、精确和高效的数据处理。 Hive则是基于Hadoop平台的一种数据仓库解决方案,其优点主要在于其分布式数据处理能力。Hive使用HQL(Hive Query Language)来进行数据查询和转换,其语法类似于SQL,十分显式和易懂。同时,Hive支持多种文件存储格式,如ORC、Parquet等,这些文件格式可对数据进行压缩、格式转换和序列化等操作,提高数据查询和处理的效率。 与Python相比,Hive的强大之处在于其支持分布式集群环境下的大数据处理,可以处理TB级甚至更大规模的数据集。而Python适合处理较小规模的数据集,具有更灵活、易用和迭代化的特点,可以适用更多的数据处理应用场景。 在实际的数据处理应用中,Python和Hive可以互补使用。例如,在处理数据集较小的场合下,可以使用Python来进行数据清洗、处理和分析,最后将数据存储到Hive中进行查询和存储。而在处理较大数据集的场合下,Hive可以作为数据仓库来进行数据存储和查询,同时可以使用Python在集群环境下编写UDF(User Defined Function),进行更加复杂和高效的数据计算和处理。 综上所述,Python和Hive都是非常优秀的数据处理工具,它们根据不同的应用场景和需求,可以灵活地进行选择和搭配,从而提高数据处理的效率和质量。 ### 回答3: Python与Hive都是非常流行的数据处理工具,二者有着各自的优缺点和适用范围。 Python是一种高级编程语言,广泛应用于数据处理、科学计算、Web开发和人工智能等领域,具有简洁、易学、可读性强等特点。对于数据分析与处理来说,Python有着灵活的语法和丰富的数据处理库,如NumPy,Pandas和Scipy等,可以快速实现数据清洗、处理、分析等操作。Python还提供了大量的可视化工具,如Matplotlib和Seaborn等,可以轻松生成各种图表和可视化分析结果。 Hive是一种基于Hadoop的数据仓库解决方案,专门用于处理大规模数据集,具有分布式的,可扩展的,高效的特点。Hive使用SQL-like的查询语言HQL(Hive Query Language),可以将复杂的MapReduce任务转化为SQL查询,可以进行快速的数据分析和查询。Hive提供了丰富的内置函数、数据类型和聚合函数等,可以方便地进行数据清洗和分析,同时支持自定义函数和UDFs,满足用户的个性化需求。 从功能特点上来看,Python适用于数据分析、建模和可视化等领域,可以方便地进行数据清洗、处理和分析,尤其对于小规模和中等规模的数据集处理效率高。而Hive则专注于大规模数据集的处理和分析,能够高效地处理PB级别的数据,但由于Hive属于批处理框架,不适合实时数据处理。 综上所述,Python和Hive各自有各自的优势和适用场景,具体应该根据实际需求来选择使用哪种工具。在实际应用中,Python和Hive也可以相互配合,Python可用于数据清洗和预处理,Hive可用于海量数据处理和分析,从而构建高效、可靠的数据处理与分析体系。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值