给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整数均为负数时,定义子段和为0。
要求算法的时间复杂度为O(n)。
输入格式:
输入有两行:
第一行是n值(1<=n<=10000);
第二行是n个整数。
输出格式:
输出最大子段和。
输入样例:
在这里给出一组输入。例如:
6
-2 11 -4 13 -5 -2
输出样例:
在这里给出相应的输出。例如:
20
作者
陈晓梅
单位
广东外语外贸大学
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
# include<iostream>
using namespace std;
int x=0;
int maxSum(int a[], int l, int r)
{
int i, s1=0, s2=0, maxl, maxr, mid, sum=0;
x++;
if(l==r)
{
if(a[l]>=0)
sum=a[l];
else
sum=0;
}
else
{
mid=(l+r)/2;
maxl=maxSum(a, l, mid);
maxr=maxSum(a, mid+1, r);
int t=0;
for(i=mid; i>=l; i--)
{
t += a[i];
if(s1<t)
s1=t;
}
t=0;
for(i=mid+1; i<=r; i++)
{
t += a[i];
if(s2<t)
s2=t;
}
sum=s1+s2;
if(sum<maxl)
sum=maxl;
if(sum<maxr)
sum=maxr;
}
return sum;
}
int main()
{
int n, i, sum;
int a[1000];
cin>>n;
for(i=0; i<n; i++)
{
cin>>a[i];
}
sum=maxSum(a, 0, n-1);
cout<<sum<<endl;
return 0;
}