1.重写equals和hashCoe的原因
hashcode方法:底层是采用c语言编写的,根据对象的内存地址转换成整数类型。
定律:
- 如果两个对象的hashcode值相等的情况下,对象的内容值不一定相等,hash碰撞问题。
- 如果使用equals方法比较两个对象内容值相等的情况下,则两个对象的HashCode值相等。
注意:
- equals方法默认的情况下Object类中采用==比较对象的内存地址值是否相等,只要覆写equals,就必须覆写hashcode
- 如果自定义对象作为Map的键,那么必须覆写hashcode和equals,因为如果不重写equals和hashcode方法的时候,如果自定义对象的内容值相等的时候,地址值还是不一样,这样两个对象还是作为新的key存到Map中,就会出现内存泄漏,导致内存溢出的问题。
- String已经重写了hashcode和equals方法,我们可以直接使用String作为key来使用。
2.HashMap如何避免内存泄漏问题
自定义对象作为key的时候,一定要重写equals和hashcode方法,保证对象key不重复创建。
3.HashMap和HashTable的区别
- HashMap线程不安全,允许key和value为null,key为null的时候放在数组的第一个位置
- HashTable线程安全,不允许key和value为null
4.HashMap底层实现
基于ArrayList实现
基于数组+单链表(jdk1.7)
基于数组+单链表+红黑树(jdk1.8)
hash碰撞问题
原因:hashcode值相同,内容值不等。
4.LinkedHashMap
- 基于了双向链表来保证有序。
- LinkedHashMap是HashMap的子类,内部采用了一个双向链表维护键值对的顺序,每个键值对既位于哈希表中,也位于双向链表中,LinkedHashMap支持两种顺序 插入顺序、访问顺序
- 插入顺序:先添加的在前面,后添加的在后面,修改操作不影响顺序
- 访问顺序:执行get/put操作后,其对应的键值对会移动到链表末尾,所以末尾是最近访问的,越是前面是最久没有访问的
- 其中参数accessOrder是用来指定是否按访问顺序,如果为true,就是按照访问顺序,false是按照新增顺序,默认是false按照新增顺序。
LinkedHashMap<String, String> linkedHashMap = new LinkedHashMap<>(16, 0.75f, true);
linkedHashMap.put("a", "a");
linkedHashMap.put("b", "b");
linkedHashMap.put("c", "c");
linkedHashMap.get("b");
linkedHashMap.get("a");
linkedHashMap.forEach((k, v) -> {
System.out.println(k + "=>" + v);
});
基于LinkedHashMap实现LRU淘汰策略
package com.mayikt;
import java.util.LinkedHashMap;
import java.util.Map;
/**
* @Description:
* @Author: ChenYi
* @Date: 2021/03/09 23:50
**/
public class LRUCache<K, V> extends LinkedHashMap<K, V> {
private int capacity;
public LRUCache(int capacity) {
super(capacity, 0.75f, true);
this.capacity = capacity;
}
@Override
protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
return size() > capacity;
}
public static void main(String[] args) {
LRUCache<String, String> lruCache = new LRUCache<>(3);
lruCache.put("a", "a");
lruCache.put("b", "b");
lruCache.put("c", "c");
lruCache.forEach((k, v) -> System.out.println(k + "=>" + v));
lruCache.put("d", "d");
lruCache.forEach((k, v) -> System.out.println(k + "=>" + v));
lruCache.put("e", "e");
lruCache.forEach((k, v) -> System.out.println(k + "=>" + v));
}
}
5.HashMap(1.8)如何降低hash冲突
hash值的计算函数
key == null? 0 : (h = key.hashCode()) ^ (h >>> 16);
6.减少index冲突
数组长度减1,因为数组的长度都是2的幂次方,为偶数,通过减1变成奇数再与哈希值进行&运算,能够减少index冲突
(n - 1) & hash
7.HashMap的核心参数
初始容量,默认为16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4
最大的容量
static final int MAXIMUM_CAPACITY = 1 << 30
默认的加载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
链表转成红黑树时链表的长度阈值,链表长度大于等于8
static final int TREEIFY_THRESHOLD = 8;
红黑树转成链表的时候链表的长度
static final int UNTREEIFY_THRESHOLD = 6;
链表转成红黑树时,数组的容量最小值,也就是说链表要转成红黑树需要,需要数组的长度大于64且链表的长度大于8
static final int MIN_TREEIFY_CAPACITY = 64;
底层采用单向链表
final int hash;
final K key;
V value;
Node<K,V> next;
需要将key的hash保存起来是为了下次扩容的时候,能够计算该key在新的table中index值。
table数组 类型:单向链表
transient Node<K,V>[] table;
数组的实际容量大小
transient int size;
transient不能给被序列化
遍历我们的HashMap集合防止多线程篡改我们的数据
transient int modCount;
加载因子
final float loadFactor;
8.HashMap的put方法
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
//tab表示数组,p表示当前索引对应的数组中的节点,n表示数组的容量,i表示当前key对应的索引位置
Node<K,V>[] tab; Node<K,V> p; int n, i;
//如果是第一次添加的时候就进行扩容,默认为16
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//判断当前索引对应的数组位置是否为空,如果为空则直接赋值就可以
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
//当前索引对应的数组是不为空的,有值,发生了index冲突
Node<K,V> e; K k;
//如果要添加的key值是跟当前索引对应的节点的key是一样的,则直接修改value值就可以了
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
//当前节点属于红黑树
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
//当前节点属于链表
for (int binCount = 0; ; ++binCount) {
//当前是否为链表的尾节点,如果是则直接赋值
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//判断当前链表的长度是否大于8,如果是大于8,则进行链表转成红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
//链表转成红黑树
treeifyBin(tab, hash);
break;
}
//判断要添加的key是否跟链表中的key是否相同,有则修改value值
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//如果key相同则修改对应的value值即可
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
//新增节点才会增加,如果是修改节点的时候没有走到这一步
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
//如果当前节点的链表大于8,但是数组的容量小于64则进行扩容而已,还没有进行链表转成红黑树
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
do {
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
9.modCount参数的作用
modeCount是在新增节点才会进行添加,如果是修改节点是没有增加的,HashMap不是线程安全的,因此如果在使用迭代器的过程中有其他线程新增了Map,那么将抛出ConcurrentModificationException,这就是所谓的fail-fast策略,该策略在源码中的实现是通过modeCount,修改次数来处理的
public void forEach(BiConsumer<? super K, ? super V> action) {
Node<K,V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next)
action.accept(e.key, e.value);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
10.扩容原理
1.7扩容存在死循环原理分析图
链接: https://www.processon.com/diagraming/604a3cd31e08537ac5bad2ab.
1.8扩容解决死循环问题
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
//存在值的扩容,遍历整个数组
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
//用一个临时变量接收每个链表,然后把旧列表置空
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
//如果当前链表只有一个节点,那直接放在新的列表的索引位置即可
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
//如果当前节点是红黑树
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
//当前节点为链表
else { // preserve order
//低位链表
Node<K,V> loHead = null, loTail = null;
//高位链表,采用两个链表是为了降低链表的长度
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
//采用尾插法插入数据
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
//低位链表不为空则赋值到新的table中
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
//高位链表不为空则赋值到新的table中
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
11.加载因子是0.75的原因
- 如果加载因子过大,阈值比较大,数组的空间利用率高,但是发生index冲突大
- 如果加载因子过小,阈值比较小,则扩容比较快,数组的空间利用率低,发生index的概率低
12.HashMap如何存放1万条key效率最高
核心是要减少数组的扩容次数,所以如果确定要存储1万条数据的情况下,则可以直接初始化数组的大小到指定的大小,不进行扩容,这样效率就是最高的
初始化的容量大小=(存放的key数量/加载因子)+1
为啥HashMap中数组的容量是2的整数次幂
减少哈希冲突,均匀分布元素
参考:蚂蚁课堂