题意:有一个n*n的棋盘,要在上面放将,一个将可以控制本身的位置和上下左右四格,棋盘上有一些地方不能放将,但是这些点也要被控制,问最少要放几个将。
思路:状态压缩DP,我们反过来想,最多空多少格不放,能控制所有的格子。
对于数据,我们先做一个预处理,求出每行可以的状态和这个状态对应空的格数,这里我用f[i][j]表示第i行在j状态下空的格数,如果j状态不可以则赋值-1。之后我也求出一个每种状态的控制范围,用ff[j]表示j状态下这一行控制的情况。
这些做完后就是一个DP的过程,对于第i行的控制情况,和第i-1行的放置情况有关系,当然,这里第一行除外,同时第i行一定要确保第i-1行未被控制的格子能控制到,第i行和i-1行在同一列不可能都有放置,等等一系列情况考虑之后,可以用下面的状态转移方程:
dp[i][j][ff[j]|k]=max(dp[i][j][ff[j]|k],dp[i-1][k][l]+f[i][j]);
这里i代表第i行,j代表第i行的放置状态,k代表第i-1行的放置状态,ff[j]|k 即为第i行的控制状态,l为第i-1行控制状态。
处理完所有行后,看最后一行全被控制的状态,取最大值。然后将格子数减它就能得到答案了,不可能的情况酌情判断。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<vector>
#include<queue>
#include<cmath>
using namespace std;
int m,n;
bool h[11][11];
int f[11][555];
int ff[555];
int dp[11][555][555];
void pre()
{
int u=(1<<n);
for(int i=0;i<n;i++)
{
for(int j=0;j<u;j++)
{
int cnt=0,num=0,r=j;
bool ok=0;
for(int k=n-1;k>=0;k--)
{
if(r%2)
{
if(h[i][k])
{
ok=1;
break;
}
if(cnt)
{
ok=1;
break;
}
cnt=1;
}
else
{
num++;
cnt=0;
}
r/=2;
}
if(ok)f[i][j]=-1;
else
{
f[i][j]=num;
}
}
}
for(int i=0;i<u;i++)
{
int r=i;
int t=0;
if(r%2)t=(t|(1<<1));
r/=2;
for(int k=n-2;k>0;k--)
{
if(r%2)t=(t|((1<<(n-k))+(1<<(n-k-2))));
r/=2;
}
if(r%2)t=(t|(1<<(n-2)));
t=(t|i);
ff[i]=t;
}
}
int main()
{
int x,y;
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(h,0,sizeof(h));
for(int i=0;i<m;i++)
{
scanf("%d%d",&x,&y);
h[x-1][y-1]=1;
}
if(n==1)
{
if(h[0][0])cout<<-1<<endl;
else cout<<1<<endl;
continue;
}
pre();
int u=(1<<n);
memset(dp,-1,sizeof(dp));
for(int i=0;i<u;i++)
{
if(f[0][i]!=-1)
{
dp[0][i][ff[i]]=f[0][i];
}
}
for(int i=1;i<n;i++)
{
for(int j=0;j<u;j++)
{
if(f[i][j]==-1)continue;
for(int k=0;k<u;k++)
{
if(j&k)continue;
if(f[i-1][k]==-1)continue;
for(int l=k;l<u;l++)
{
if(dp[i-1][k][l]==-1)continue;
if((ff[k]&l)!=ff[k])continue;
if((j|l)!=u-1)continue;
dp[i][j][ff[j]|k]=max(dp[i][j][ff[j]|k],dp[i-1][k][l]+f[i][j]);
}
}
}
}
int ans=0;
for(int i=0;i<u;i++)ans=max(ans,dp[n-1][i][u-1]);
if(ans)cout<<n*n-ans<<endl;
else cout<<-1<<endl;
}
return 0;
}