zoj 3732 构造

思路:网上说是Havel-Hakimi定理,不管他什么定理,反正和我的思路一样(呵呵呵。)就是每次将剩下的排序,找度数最大的,与其他中较大的几个建边,如果和剩下的都建了,这个点还有度数剩余,那么肯定不能构图了。否则一直这样构造。

之后关于判断有没有多种不同的图,我的思路是这样的,找到这样的V1,V2,V3,V4四个点,是的它们符合如下条件,v1与v2有边,v3和v4有边,v1与v4没边,v3和v2没边,如果找到了这样的四个点,那么一定有多种构造方法,为什么呢,见下图:


这样我们可以使它们交叉互换一下,而是的点的度数不变。当然,我只能证明找到这四个点就有不同构造,还不能保证有不同构造的图都能找到这样的四个点,不过既然能A题,就这么做着吧,我觉得应该是可以证明的,谁有兴趣可以证明下告诉我。

网上还有其他的思路,也可以借鉴下。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
struct node
{
    int num,cnt;
}p[111];
struct edge
{
    int from,to;
};
vector<edge>edges;
int n,m;
bool l[111][111];
vector<int>g[111];
int v1,v2,v3,v4;
bool cmp(node x,node y){return x.cnt>y.cnt;}
bool go()
{
    for(int i=1;i<=n;i++)
    {
        int s1=g[i].size();
        for(int j=0;j<s1;j++)
        {
            int u=g[i][j];
            for(int k=1;k<=n;k++)
            {
                if(l[k][u]||k==u)continue;
                int s2=g[k].size();
                for(int h=0;h<s2;h++)
                {
                    int v=g[k][h];
                    if(v==i)continue;
                    if(l[i][v]==0)
                    {
                        v1=i;v2=u;v3=k;v4=v;
                        return true;
                    }
                }
            }
        }
    }
    return false;
}
void print()
{
    printf("%d %d\n",n,m);
    for(int i=0;i<m;i++)
    {
        printf("%d",edges[i].from);
        if(i!=m-1)printf(" ");
    }
    printf("\n");
    for(int i=0;i<m;i++)
    {
        printf("%d",edges[i].to);
        if(i!=m-1)printf(" ");
    }
    printf("\n");
}
void solve()
{
    m=0;
    for(int i=0;i<n;i++)
    {
        sort(p+i,p+n,cmp);
        int u=p[i].num;
        for(int j=i+1;j<n;j++)
        {
            int v=p[j].num;
            if(p[i].cnt&&p[j].cnt)
            {
                p[i].cnt--;p[j].cnt--;
                l[u][v]=l[v][u]=1;
                g[u].push_back(v);g[v].push_back(u);
                m++;
            }
            else break;
        }
        if(p[i].cnt){printf("IMPOSSIBLE\n");return;}
    }
    if(go())
    {
        printf("MULTIPLE\n");
        edges.clear();
        for(int i=1;i<=n;i++)
        {
            int s=g[i].size();
            for(int j=0;j<s;j++)
            {
                int u=g[i][j];
                if((i==v1&&u==v2)||(i==v2&&u==v1)||(i==v3&&u==v4)||(i==v4&&u==v3))continue;
                if(i<u)edges.push_back((edge){i,u});
            }
        }
        edges.push_back((edge){v1,v4});
        edges.push_back((edge){v3,v2});
        print();
        edges.clear();
        for(int i=1;i<=n;i++)
        {
            int s=g[i].size();
            for(int j=0;j<s;j++)
            {
                int u=g[i][j];
                if(i<u)edges.push_back((edge){i,u});
            }
        }
        print();
    }
    else
    {
        printf("UNIQUE\n");
        edges.clear();
        for(int i=1;i<=n;i++)
        {
            int s=g[i].size();
            for(int j=0;j<s;j++)
            {
                int u=g[i][j];
                if(i<u)edges.push_back((edge){i,u});
            }
        }
        print();
    }
}
int main()
{
    while(scanf("%d",&n)!=EOF)
    {
        memset(l,0,sizeof(l));
        for(int i=0;i<n;i++){scanf("%d",&p[i].cnt);p[i].num=i+1;}
        for(int i=1;i<=n;i++)g[i].clear();
        solve();
    }
    return 0;
}


【基于Python的大麦网自动抢票工具的设计与实现】 随着互联网技术的发展,网络购票已经成为人们生活中不可或缺的一部分。尤其是在文化娱乐领域,如音乐会、演唱会、戏剧等活动中,热门演出的门票往往在开售后瞬间就被抢购一空。为了解决这个问题,本论文探讨了一种基于Python的自动抢票工具的设计与实现,旨在提高购票的成功率,减轻用户手动抢票的压力。 Python作为一种高级编程语言,因其简洁明了的语法和丰富的第三方库,成为了开发自动化工具的理想选择。Python的特性使得开发过程高效且易于维护。本论文深入介绍了Python语言的基础知识,包括数据类型、控制结构、函数以及模块化编程思想,这些都是构建抢票工具的基础。 自动化工具在现代社会中广泛应用,尤其在网络爬虫、自动化测试等领域。在抢票工具的设计中,主要利用了自动化工具的模拟用户行为、数据解析和定时任务等功能。本论文详细阐述了如何使用Python中的Selenium库来模拟浏览器操作,通过识别网页元素、触发事件,实现对大麦网购票流程的自动化控制。同时,还讨论了BeautifulSoup和requests库在抓取和解析网页数据中的应用。 大麦网作为国内知名的票务平台,其网站结构和购票流程对于抢票工具的实现至关重要。论文中介绍了大麦网的基本情况,包括其业务模式、用户界面特点以及购票流程,为工具的设计提供了实际背景。 在系统需求分析部分,功能需求主要集中在自动登录、监控余票、自动下单和异常处理等方面。抢票工具需要能够自动填充用户信息,实时监控目标演出的票务状态,并在有票时立即下单。此外,为了应对可能出现的网络延迟或服务器错误,工具还需要具备一定的错误恢复能力。性能需求则关注工具的响应速度和稳定性,要求在大量用户同时使用时仍能保持高效运行。 在系统设计阶段,论文详细描述了整体架构,包括前端用户界面、后端逻辑处理以及与大麦网交互的部分。在实现过程中,采用了多线程技术以提高并发性,确保在抢票关键环节的快速响应。此外,还引入了异常处理机制,以应对网络故障或程序错误。 测试与优化是确保抢票工具质量的关键步骤。论文中提到了不同场景下的测试策略,如压力测试、功能测试和性能测试,以验证工具的有效性和稳定性。同时,通过对抢票算法的不断优化,提高工具的成功率。 论文讨论了该工具可能带来的社会影响,包括对消费者体验的改善、对黄牛现象的抑制以及可能引发的公平性问题。此外,还提出了未来的研究方向,如增加多平台支持、优化抢票策略以及考虑云服务的集成,以进一步提升抢票工具的实用性。 本论文全面介绍了基于Python的大麦网自动抢票工具的设计与实现,从理论到实践,从需求分析到系统优化,为读者提供了一个完整的开发案例,对于学习Python编程、自动化工具设计以及理解网络购票市场的运作具有重要的参考价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值