大数据常见面试题目

本文收集了大数据领域的常见面试问题,涵盖核心知识点,为技术面试做准备。
摘要由CSDN通过智能技术生成

  每天在在技术群里沉水,搜刮些面试题目,留作备用~

1.简述对大数据组件:Yarn,Spark,Hbase,Hive的理解

2.hdf文件系统中Namenode和DataNode区别和联系

3.请描述Spark RDD中的transform和action的理解?
4.两个类TextInputFormat和KeyValueInputFormat的区别是什么?

5.在hadoop任务中,什么是inputsplit?

6.hadoop框架中文件拆分是怎么被调用的?

7.参考下面的MR系统场景:
hdfs块大小为64M
输入类型为:64M
有三个大小的文件,分别为64KB,65MB,127MB
hadoop文件会被这些文件拆分为多少split?

8.hadoop文件中,RecordReader的作用是什么?

9.Map阶段结束后,Hadoop框架会处理:Partitioning,shuffle,和Sort,在这个阶段都发生了什么?

10.如果没有定义Partitioner,那数据在没有被送达reducer之前是如何被分区的?

11.什么是combiner?

12.分别举例什么情况下会使用combiner,什么情况下不会使用?


13.以下操作是属于窄依赖的spark transformation的是
(A) Rdd.map  (B)rdd.count (C)rdd.filter (D)rdd.reducebykey

14.在Hadoop中定义的主要公用inputFormats中,哪一个是默认值(A)TextInputFormat
(B)KeyValueInputFormat
(C)SequenceFileInputFormat

15.请写出下面代码执行后A1和B1的值
val books=List("Hadoop","Hive","HDFS")
val A1=books.map(a->a.toUpperCase())
val B1=books.flatMap(a->a.toUpperCase())


这里尝试做一下:先回答前三个,后面有时间在回答,大家有兴趣,可以解答下

1.简述对大数据组件:Yarn,Spark,Hbase,Hive的理解
Yarn可以理解为大数据组件运行job的管理器。
Spark分布式的利用内存进行分布式运算的大数据组件
Hbase是基于Hadoop的大数据常用数据库
Hive则是基于Hadoop的大数据数据仓库,操作跟关系数据库类似。

2.hdf文件系统中Namenode和DataNode区别和联系
Namenode存储了元数据,并且调度、协调整个集群
DataNode主要用来存储数据

3.请描述Spark RDD中的transform和action的理解?
1,transformation是得到一个新的RDD,方式很多,比如从数据源生成一个新的RDD,从RDD生成一个新的RDD

2,action是得到一个值,或者一个结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值