题目描述
有一个地下迷宫,它的通道都是直的,而通道所有交叉点(包括通道的端点)上都有一盏灯和一个开关;请问如何从某个起点开始在迷宫中点亮所有的灯并回到起点?
输入
连续T组数据输入,每组数据第一行给出三个正整数,分别表示地下迷宫的结点数N(1 < N <= 1000)、边数M(M <= 3000)和起始结点编号S,随后M行对应M条边,每行给出一对正整数,表示一条边相关联的两个顶点的编号。
输出
若可以点亮所有结点的灯,则输出从S开始并以S结束的序列,序列中相邻的顶点一定有边,否则只输出部分点亮的灯的结点序列,最后输出0,表示此迷宫不是连通图。
访问顶点时约定以编号小的结点优先的次序访问,点亮所有可以点亮的灯后,以原路返回的方式回到起点。
题解:这个题就是在深度遍历的基础上在回溯一个节点的事。
示例输入
1 6 8 1 1 2 2 3 3 4 4 5 5 6 6 4 3 6 1 5
示例输出
1 2 3 4 5 6 5 4 3 2 1
#include<iostream>
#include<cstring>
using namespace std;
int point,side,in;
int count[1001],map[1001][1001],mark[1001];
void Dfs(int x)
{
int i;
count[in++]=x;
mark[x]=1;
for(i=1;i<=point;i++)
{
if(map[x][i]==1&&mark[i]==0)
{
//cout<<x<<" "<<i<<endl;
Dfs(i);
count[in++]=x;//这就是回溯的过程。
}
}
}
int main()
{
int n,i,a,b,start;
cin>>n;
while(n--)
{
memset(mark,0,sizeof(mark));
memset(map,0,sizeof(map));
cin>>point>>side>>start;
for(i=1;i<=side;i++)
{
cin>>a>>b;
map[a][b]=map[b][a]=1;
}
in=0;
Dfs(start);
for(i=0;i<in;i++)
{
if(i==0)
cout<<count[i];
else
cout<<" "<<count[i];
}
if(in<2*point-1)
cout<<" "<<'0';
cout<<endl;
}
return 0;
}