梯度下降策略简介

本文探讨了梯度下降的三种策略:批次梯度下降、随机梯度下降和小批次梯度下降,分析了各自的优缺点。批次梯度下降在凸函数上保证收敛,但更新慢;随机梯度下降速度快,但梯度精度低;小批次梯度下降是两者的折衷,能更稳定收敛。然而,所有方法在确定学习率、适应性调整和局部极小值方面存在挑战。
摘要由CSDN通过智能技术生成

梯度下降训练策略

本文意在干脆地写明白梯度下降训练策略的优缺点

批次梯度下降 (Batch Gradient Descent )

利用全部训练数据集计算损失函数的梯度来执行一次参数更新
θ ⇐ θ − η ⋅ ∇ J ( θ ) \theta \Leftarrow \theta - \eta {\rm{\cdot}}\nabla J(\theta ) θθηJ(θ)

缺点:
  1. 更新较慢
  2. 不能在线更新模型
优点

对凸的损失函数可保证收敛到全局最小值;对非凸的损失函数可收敛到局部最小值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值