梯度下降策略简介

本文探讨了梯度下降的三种策略:批次梯度下降、随机梯度下降和小批次梯度下降,分析了各自的优缺点。批次梯度下降在凸函数上保证收敛,但更新慢;随机梯度下降速度快,但梯度精度低;小批次梯度下降是两者的折衷,能更稳定收敛。然而,所有方法在确定学习率、适应性调整和局部极小值方面存在挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

梯度下降训练策略

本文意在干脆地写明白梯度下降训练策略的优缺点

批次梯度下降 (Batch Gradient Descent )

利用全部训练数据集计算损失函数的梯度来执行一次参数更新
θ ⇐ θ − η ⋅ ∇ J ( θ ) \theta \Leftarrow \theta - \eta {\rm{\cdot}}\nabla J(\theta ) θθηJ(θ)

缺点:
  1. 更新较慢
  2. 不能在线更新模型
优点

对凸的损失函数可保证收敛到全局最小值;对非凸的损失函数可收敛到局部最小值

Linux创始人LinusTorvalds有一句名言:Talk is cheap, Show me the code.(冗谈不够,放码过来!)。 代码阅读是从入门到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。  YOLOv3是一种基于深度学习的端到端实时目标检测方法,以速度快见长。YOLOv3的实现Darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。  本课程将解析YOLOv3的实现原理和源码,具体内容包括: YOLO目标检测原理  神经网络及Darknet的C语言实现,尤其是反向传播的梯度求解和误差计算 代码阅读工具及方法 深度学习计算的利器:BLAS和GEMM GPU的CUDA编程方法及在Darknet的应用 YOLOv3的程序流程及各层的源码解析本课程将提供注释后的Darknet的源码程序文件。  除本课程《YOLOv3目标检测:原理与源码解析》外,本人推出了有关YOLOv3目标检测的系列课程,包括:   《YOLOv3目标检测实战:训练自己的数据集》  《YOLOv3目标检测实战:交通标志识别》  《YOLOv3目标检测:原理与源码解析》  《YOLOv3目标检测:网络模型改进方法》 建议先学习课程《YOLOv3目标检测实战:训练自己的数据集》或课程《YOLOv3目标检测实战:交通标志识别》,对YOLOv3的使用方法了解以后再学习本课程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值