纪念POJ 排名挤进前万名

今天POJ的刷题排名终于过了10000名,虽然刷题数目还是没有过了百题,名次是动态的,如果半天不再过题的一定会被其他人挤出万名之外,所以在今后还要再接再厉,向着5000名次进发!

贴张图纪念一下下:


让我挤进前万名行列的是刚才刷的一道MST题,不过不是最小生成树(Minimal Spanning Tree)题,而是最大生成树(Maxmal Spanning Tree 不知道在数据结构上有没有这个专业名次)题,点击打开链接进入题目,通过这道题也让我察觉到了我对Kruskal算法存在一些错误的理解,之前认为KrusKal()如果返回正值则是权值,返回0则表示无向图不连通,其实不然,正确的理解是:如果无向图是连通的,则返回权值,如果不连通,则返回此无向图的的生成树的边数。

附上Kruskal算法:

struct edge{  
    int u, v, w;  
};  
  
const int NODE_NUM = 102;  
edge e[NODE_NUM*NODE_NUM];  
int father[NODE_NUM];  
int n, ne;    //n是顶点的个数,ne是边的个数  
  
bool cmp(const edge& a, const edge& b)  
{  
    return a.w < b.w;  
}  
  
void make_set()  
{  
    for (int i = 1; i <= n; ++i)  
        father[i] = i;  
}  
  
int find_set(int i)  
{  
    if (father[i] != i){  
        father[i] = find_set(father[i]);  
    }  
    return father[i];  
}  
  
bool union_set(int a, int b) //a --> b  
{  
    a = find_set(a);  
    b = find_set(b);  
    if (a != b){  //没有共同祖先,说明没有形成回路  
        father[a] = b; //将节点纳入最小生成树集合  
        return true;  
    }  
    else{  
        return false;  
    }  
}  
  
int kruskal()  
{  
    int i, mst_edge = 0, sum = 0;  
    make_set();  
    sort(e, e+ne, cmp);  //将边按升序排序  
    for (i = 0; i < ne; ++i){  
        //如果加入的边不会使树形成回路  
        if (union_set(e[i].u, e[i].v)){  
            sum += e[i].w;  
            //如果纳入的边数等于顶点数-1,则说明最小生成树形成  
            if (++mst_edge == n - 1){  
                return sum;    //如果图是连通图,返回权值  
            }  
        }  
    }  
    return mst_edge;   //如果不是连通图,则返回最大的连通(可以是多个生成树)的边的个数, 
    //return -1; 表示无向图不连通; 
}  



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值