python使用shapely.ops nearest_points做最邻近分析

from shapely.ops import nearest_points

        selectisotemp[['nearpointA', 'nearpointB']] = selectisotemp.apply(
            lambda x: nearest_points(x.mrband, mc['mrband']), axis=1, result_type='expand')
        selectisotemp[['nearpointA', 'nearpointB']] = selectisotemp.apply(
            lambda x: (x.nearpointA.coords[0], x.nearpointB.coords[0]), axis=1, result_type='expand')
        selectisotemp[['bandA', 'bandB']] = selectisotemp.apply(
            lambda x: (list(x.mrband.exterior.coords), list(mc['mrband'].exterior.coords)), axis=1,
            result_type='expand')
        selectisotemp['pointATRUE'] = selectisotemp.apply(lambda x: 1 if x.nearpointA in x.bandA else 0, axis=1)
        selectisotemp['pointBTRUE'] = selectisotemp.apply(lambda x: 1 if x.nearpointB in x.bandB else 0, axis=1)

        selectisotemp['cibetween'] = selectisotemp['Ci'] + ';' + mc['Ci']
        selectisotemp[['A', 'B']] = selectisotemp.apply(lambda x: (x.Ci, mc['Ci']), axis=1,
                                                        result_type='expand')
        selectisotemp['cibetweensame'] = selectisotemp['cibetween'].apply(lambda x: ';'.join(sorted(x.split(';'))))
        print(selectisotemp)
        # selectisotemp.drop(['nearpointA', 'nearpointB', 'bandA', 'bandB'], axis=1, inplace=True)
        print(selectisotemp)
        selectiso.append(selectisotemp)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值