LeetCode基础-图-有向图-强连通性

在有向图中,如果两个顶点 v 和 w 是互相有向的,则称它们是强连通的。
在有向图中,如果任意两个顶点都是互相有向的,则称这幅图是强连通图。
所以有以下命题:

  • 任意顶点 v 和自身也是强连通的。
  • 如果 v 和 w 强连通的,则 w 和 v 也是强连通的。
  • 如果 v 和 w 强连通,w 和 x 强连通,则 v 和 x 也是强连通的。

强连通性将所有顶点分成了一些平等的部分,每个部分都是由 相互为强连通的顶点 的最大子集 组成。这些子集叫作 强连通分量。强连通分量的定义基于顶点,而不是边。

这里写图片描述

上图是有向图中的强连通分量。

这里写图片描述

上图是表示食物链的有向图的一个子集。

使用 DFS 查找有向图 G 中的反向图 GR,得到所有顶点的反向后序,再次使用 DFS 处理有向图 G(Kosaraju算法)。构造函数的每一次递归调用所标记的顶点都在同一个强连通分量中。

Kosaraju 算法的实现:

public class KosarajuSCC
{
    private boolean[] marked; // reached vertices
    private int[] id; // component identifiers
    private int count; // number of strong components
    public KosarajuSCC(Digraph G)
    {
        marked = new boolean[G.V()];
        id = new int[G.V()];
        DepthFirstOrder order = new DepthFirstOrder(G.reverse());
        foreach (int s in order.reversePost())
        {
            if (!marked[s])
            { 
                dfs(G, s); 
                count++; 
            }
        }
    }
    private void dfs(Digraph G, int v)
    {
        marked[v] = true;
        id[v] = count;
        foreach (int w in G.adj(v))
        {
            if (!marked[w])
            {
                dfs(G, w);
            }
        }
    }
    public boolean stronglyConnected(int v, int w)
    { return id[v] == id[w]; }

    public int id(int v)
    { return id[v]; }

    public int count()
    { return count; }
}

算法的图解过程:

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值