Java中 接口是如何实现多态的特性的

转自:https://www.cnblogs.com/1693977889zz/p/8298240.html Java中 接口是如何实现多态的特性的 Java中多态是个很难理解的概念,但同时又是非常重要的概念,Java三大特性(封装、继承、多态)之一,我们从字面上理解,就是一种类型的多种状态,...

2018-08-13 16:30:24

阅读数 99

评论数 0

Java集合类: Set、List、Map、Queue使用场景梳理

转自:https://www.cnblogs.com/LittleHann/p/3690187.html Java集合类: Set、List、Map、Queue使用场景梳理 本文主要关注Java编程中涉及到的各种集合类,以及它们的使用场景 相关学习资料 http://files.cnbl...

2018-08-13 16:21:07

阅读数 29

评论数 0

中文分词简单小结

中文分词实现原理: 1、基于词典分词算法 也称字符串匹配分词算法。该算法是按照一定的策略将待匹配的字符串和一个已建立好的“充分大的”词典中的词进行匹配,若找到某个词条,则说明匹配成功,识别了该词。常见的基于词典的分词算法分为以下几种:正向最大匹配法、逆向最大匹配法和双向匹配分词法等。 基于词...

2018-08-12 17:34:37

阅读数 277

评论数 0

PCA SVD TSVD

一、PCA 数学推导过程: 假设有n×d矩阵X,每一行是一个d维样本xi,寻找投影方向vj以最大化投影方差:   λj是特征向量vj对应的特征值。可以发现当投影方向是CC的最大特征值对应的特征向量时,投影方向上数据的方差最大。所以用PCA进行降维时通常选取较大特征值对应的特征向量作为投影...

2018-08-12 16:14:45

阅读数 654

评论数 0

从特征分解到协方差矩阵:详细剖析和实现PCA算法

原文地址:https://www.jiqizhixin.com/articles/2017-07-05-2 从特征分解到协方差矩阵:详细剖析和实现PCA算法 本文先简要明了地介绍了特征向量和其与矩阵的关系,然后再以其为基础解释协方差矩阵和主成分分析法的基本概念,最后我们结合协方差矩阵和主成分分...

2018-08-12 12:00:17

阅读数 1267

评论数 0

网易笔试题——骰子游戏

网易试题 小易参加了一个骰子游戏,这个游戏需要同时投掷n个骰子,每个骰子都是一个印有数字1~6的均匀正方体。 小易同时投掷出这n个骰子,如果这n个骰子向上面的数字之和大于等于x,小易就会获得游戏奖励。 小易想让你帮他算算他获得奖励的概率有多大。 输入描述: 输入包括两个正整数n和x(1 ≤...

2018-08-10 16:33:30

阅读数 207

评论数 0

C++中常用的两种创建动态数组方法:new()和vector.

C++中常用的两种创建动态数组方法:new()和vector.  1、new 方法:int *p=new int[num];创建一个容量为num的int型数组,num可来自外部输入、函数传递等,int型指针p指向动态数组的首地址,在动态数组创建完成后,我们可以下标访问数组元素:p[0],p[1]...

2018-08-08 10:44:54

阅读数 1584

评论数 0

进程与线程的一个简单解释

PS:文中的例子浅显易懂,适合入门,但并不是很准确,文后节选一些比较专业的评论,这样理解更加全面一些。 进程与线程的一个简单解释 作者: 阮一峰 日期: 2013年4月24日   进程(process)和线程(thread)是操作系统的基本概念,但是它们比较抽象,不容易掌握。 最近,我...

2018-08-08 10:37:55

阅读数 73

评论数 0

字符串匹配的KMP算法(通俗易理解)

转载http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm.html 字符串匹配的KMP算法 作者: 阮一峰 日期: 2013年5月 1日 字符串匹配是计算机的基本任务之一。 ...

2018-08-08 09:16:42

阅读数 30

评论数 0

循环语句中的break和continue有何区别?

转发:https://www.cnblogs.com/reommmm/archive/2008/04/16/1156701.html 循环语句中的break和continue有何区别? break表示跳出循环,continue表示结束本次循环  示例程序如下:  #include &q...

2018-08-08 09:07:33

阅读数 67

评论数 0

机器学习面试题之——LR问题集合

一、LR为什么是线性模型 Logistic Regression从几率的概念构建线性回归模型。一个事件发生的几率(odds)为该事件发生的概率与不发生概率的比值,几率的取值范围为[0,+∞),其对数的取值范围为实数域,所以,可以将对数几率作为因变量构建线性回归模型:     由此可得,即P(y=...

2018-07-30 20:07:20

阅读数 2228

评论数 0

机器学习面试题之——简要介绍超参数搜索

转发:https://blog.csdn.net/zhangbaoanhadoop/article/details/79559025 本篇文章主要介绍在sklearn中采用GridSearchCV和RandomizedSearchCV进行超参数选择。 一、超参数介绍:  1,超参数:在模型训练...

2018-07-29 16:29:28

阅读数 399

评论数 0

机器学习面试题之——BatchNorm

一、背景知识 1、机器学习领域有个重要假设:IID独立同分布假设,就是假设训练数据和测试数据是满足相同分布的,这是通过训练数据获得的模型能够在测试集获得好的效果的一个基本保障。而BatchNorm就是在深度神经网络训练过程中使得每一层神经网络的输入保持相同分布。 2、Covariate Shi...

2018-07-28 16:06:09

阅读数 434

评论数 0

机器学习面试题之——简单介绍最小二乘

1、常用到的最小二乘场合:最小二乘法直线拟合,最小二乘法多项式(曲线)拟合,机器学习中线性回归的最小二乘法,系统辨识中的最小二乘辨识法,参数估计中的最小二乘法,等等。 2、为什么用最小二乘:相比于绝对值的方法,平方和的方法可以得到更短的距离,使得拟合函数更接近于目标函数。从范数的角度考虑这个问题...

2018-07-26 11:35:38

阅读数 394

评论数 0

机器学习面试题之——简单总结常见排序算法

思想+时间复杂度+空间复杂度 1、冒泡排序:依次比较和交换相邻的两个数从而把小的数排在前面      时间复杂度:平均,最坏,最好(数据有序的情况下:设置一个标志位,若第一趟交换完成后,没有数据改变位置,则结束后面的交换)。空间复杂度:,稳定 2、选择排序:可看成冒泡排序的优化算法,但只有在...

2018-07-25 16:45:19

阅读数 75

评论数 0

机器学习面试题之——简单解释正则化为什么能减小模型复杂度

理论上,从VC维的角度可以解释,正则化能直接减少模型复杂度。(公式理论略) 直观上,对L1正则化来说,求导后,多了一项η * λ * sgn(w)/n,在w更新的过程中: 当w为正时,新的w减小,当w为负时,新的w增大,意味着新的w不断向0靠近,即减小了模型复杂度。(PS:也是为什么L1能...

2018-07-25 15:09:08

阅读数 403

评论数 0

C++三种容器:list、vector和deque的区别

转自:https://blog.csdn.net/gogokongyin/article/details/51178378 C++三种容器:list、vector和deque的区别            在写C++程序的时候会发现STL是一个不错的东西,减少了代码量,使代码的复用率大大提高,减...

2018-08-16 22:42:33

阅读数 36

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭