楷体_GB2312 ttf文件
这是常用的字体楷体_GB2312的ttf文件,希望对大家有帮助。
仿宋_GB2312字体 ttf文件
这是常见的字体仿宋_GB2312字体的ttf文件
Ubuntu用户与群组管理
在Ubuntu中,任何文件或者目录都属于特定的用户,不同的用户有效地保证了系统资源的安全性。
算法分析与设计课后答案
第一章:算法概述 第二章:递归与分治策略 第三章:动态规划 第四章:贪心算法 第五章:回溯法 第六章:分支限界法 第七章:概率算法 第八章:线性规划与网络流 第九章:NP完全性理论与近似算法
算法与数据结构学习指导与习题解析
第一章:绪论 第二章:表 第三章:串 第四章:树 第五章:集合 第六章:算法设计策略与技巧 第七章:排序与选择 第八章:图 第九章:问题的计算复杂性 第十章:并行算法 第十一章:高级专题
改进的蚂蚁聚类算法 曲建华
该算法不再采用欧几里得距离来计算类内对象的相似性,而是使用新的对称点距离来计算相似性,在处理带有对称性质的数据集时,可以有效地识别给定数据集的聚类数目和合适的划分。
数据挖掘中聚类算法比较研究
聚类分析是数据挖掘中的一种重要技术。本文介绍了数据挖掘对聚类的典型要求和聚类方法的分类。
数据挖掘中几种划分聚类算法的比较及改进
本文首先是阐述了聚类分析以及主成分分析的一些理论基础,分析和比较了几类较流行的划分聚类算法。
数据挖掘中的聚类算法综述
聚类是数据挖掘中用来发现数据分布和隐含模式的一项重要技术。
机器学习中谱聚类方法的研究
最近几年,谱聚类方法在模式识别中得到了广泛的应用。与传统的聚类方法比较,它具有能在任意形状的样本空间上聚类,切收敛于全局最优解的优点。
三种典型的基于图分割的谱聚类方法比较
在分析谱聚类实现思路和已有算法基础上,对规范切判据,最小最大切判据和自动确定聚类数目的谱聚类典型算法进行了研究和应用。
多层自动确定类别的谱聚类算法
自动确定聚类数和海量数据的处理是谱聚类的关键问题。在自动确定聚类数谱聚类算法的基础上,提出了一种能处理大规模数据集的多层算法。
谱聚类算法对输入数据顺序的敏感性
结合矩阵分析知识,还原了实施谱聚类算法过程中的矩阵表示。发现了不同数据输入顺序使得相应的Affinity矩阵及Laplacian矩阵是相似的。
谱聚类算法综述(CAJ文件)
谱聚类算法是近年来国际上机器学习领域的一个新的研究热点。谱聚类算法建立在谱图理论基础上,与传统的聚类算法相比,它具有能在任意形状的样本空间上聚类且收敛于全局最优解的优点。
自适应谱聚类算法研究
谱聚类能识别出在原空间中线性不可分的聚类,且其效果优于传统聚类算法。谱聚类要想获得好的效果必须选择一个合适的尺度参数,本文在传统谱聚类算法的基础上引入类似核选取的技巧,提出了一个能自动选取该尺度参数的自适应谱聚类算法。
谱聚类中的相似度矩阵研究
以谱聚类算法为理论基础,对图的分割问题构造合适的相似度矩阵。构造四种相似度矩阵,并进行实验分析。试验结果表明,好的相似度矩阵对图的分割是非常有效地。
K-Means算法的初始聚类中心的优化
传统的K-Means算法对初始聚类中心敏感,聚类结果随不同的初始输入而波动,针对K-Means算法存在的问题,提出了基于密度的改进的K-Mans算法。
一种改进的K-means初始聚类中心选取算法
在传统的k-means聚类算法中,聚类结果会随着初始聚类中心点的不同而波动,针对这个确定,提出一种优化初始聚类中心的算法。
基于纹理的图像聚类研究
基于纹理的图像聚类主要分为纹理特征提取和聚类两个阶段。
聚类K-Means算法的应用研究
聚类分析是数据挖掘中的一个重要研究领域。它将数据对象分组成为若干个类或簇,使得在同一簇中的对象比较相似,而不同簇中的对象差别很大。
一种优化初始中心的K-Means粗糙聚类算法
针对K-Means算法的不足,提出了一种优化初始中心的聚类算法。
新的K-均值算法最佳聚类数确定方法
K-均值聚类算法是以确定的类数K和随机选取的初始聚类中心为前提对数据集进行聚类的。通常聚类数K实现无法确定,随机选定的初始聚类中心容易使聚类结果不稳定。
模糊C均值聚类(FCM)算法
模糊聚类是一种重要数据分析和建模的无监督方法。对模糊聚类进行了概述,从理论和实验2个方面研究了模糊c均值聚类算法。
一种改进的模糊C均值聚类算法
针对模糊C均值(FCM)聚类算法中,聚类效果往往受到聚类数目和初始聚类中心影响这一问题,提出了基于平均信息熵确定聚类数目的方法,并采用密度函数法来获得初始聚类中心。
模糊C均值聚类算法在识别中的应用研究
本文描述了聚类理论及模糊C均值算法,提出模糊C均值算法在识别中的应用算法,并指出该算法的优点和需要改进之处。
模糊C均值聚类算法中加权指数m的研究
加权指数m是模糊c均值聚类聚类算法中的一个重要参数。本文从FCM算法出发研究了m对聚类分析的影响。
基于FCM的数据聚类分析及Matlab实现
本文详细介绍了FCM聚类算法的理论和实现步骤。并用Matlab演示了FCM用于数据挖掘。
Visual C++开发基于SNMP的网络管理软件(书中的配套程序)
这里是教材《Visual C++开发基于SNMP的网络管理软件》的配套程序,因为容量限制,第十二章和第十一章的程序不在里面,分批上传。
Visual C++开发基于SNMP
本书介绍了多个应用Visual C++进行SNMP开发的实例,很有代表性。
(1990-2011)北京大学计算机考研数学基础历年真题
北京大学考研数学是自主命题的,考的是高等数学+离散数学,高等数学60分,离散数学90分。这里有从1990年到2011年的北京大学考研数学真题。
北京大学2011年计算机考研数学基础
北京大学计算机考研数学是自主命题的,高数+离离散数学,这里是今年(2011)的计算机考研数学真题。
北京大学计算机考研数学基础历年真题(1990-2011)
北京大学考研数学是自主命题的,考的是高等数学+离散数学,高等数学60分,离散数学90分。这里有从1990年到2011年的北京大学考研数学真题。
文件系统模拟 windows资源管理器模拟 源程序+实验报告
该系统是文件系统的模拟,外观上成功地模拟了windows的资源管理器。里面有源程序和实验报告。
栈和队列的相关操作的程序、骑士漫步和随机漫步的程序
这里有栈和队列的所有各种操作的程序,以及骑士漫步和随机漫步的程序。是当时上课时编写的。
UCI 数据集
该数据集是比较权威的,可用于测试聚类、分类等算法。
改进k-Means算法在文本聚类中的应用
本文基于密度的概念,对每个点(文本)按密度大小排序,通过自适应选择最佳密度半径来确定最大的点密度,选择密度较大且合理的点作为聚类的初始中心店,从而优化中心点的选择,使k-means算法有个好的起点。
面向中文文本的特征值提取
该文对于现在的特征值加权法做了一定的改进,不仅考虑了文本中的词汇概率信息,还结合文本语义等多方面信息,提出了一种基于多重启发式规则的特征值权值计算方法。
数据挖掘 测试数据集 iris、libras、Multiple Feature
这些是数据挖掘可用的一些数据集,我做毕设正用呢。可用于分类、聚类等。希望对大家有用。
安徽大学计算机学院本科毕业论文(设计)模板
安徽大学计算机学院本科毕业论文(设计)模板